GOES-16 signatures of a SpaceX rocket launch

December 22nd, 2017 |

GOES-16 Near-Infrared

GOES-16 “Red” Visible (0.64 µm, top), Near-Infrared “Snow/Ice” (1.61 µm, middle) and Shortwave Infrared (3.9 µm, bottom) images, with plots of 01 UTC surface observations [click to play animation]

GOES-16 “Red” Visible (0.64 µm), Near-Infrared “Snow/Ice” (1.61 µm) and Shortwave Infrared (3.9 µm) images (above) revealed signatures of a SpaceX Falcon 9 rocket launch at 01:27 UTC on 23 December 2017 (5:27 PM Pacific time on 22 December). The arrows on the 01:27:24 UTC images indicate the bright pixels on the 0.64 µm and 1.61 µm images, as well as the warm thermal anomaly (black pixels) on the 3.9 µm image. GOES-16 was scanning that exact location at 01:28:01 UTC.

The GOES-16 Shortwave Infrared signature was noted by a couple of NWS offices:

Signatures of another SpaceX rocket launch in Florida were captured by GOES-16 on 16 March 2017.

GOES-16 visible and thermal signatures of SpaceX EchoStar 23 rocket launch

March 16th, 2017 |

GOES-16 Visible (0.64 µm, left), Near-Infrared (1.61 µm, center) and Shortwave Infrared (3.9 µm, right) images [click to enlarge]

GOES-16 Visible (0.64 µm, left), Near-Infrared (1.61 µm, center) and Shortwave Infrared (3.9 µm, right) images [click to enlarge]

** The GOES-16 data posted on this page are preliminary, non-operational data and are undergoing testing. **

Visible and thermal signatures of the SpaceX EchoStar 23 rocket launch were seen with GOES-16 imagery on 16 March 2017. The set of 3 images above consists of 5-minute CONUS sector scans at 05:54:33 UTC (about 5 minutes before launch), 05:59:33 UTC (around launch time) and 06:04:33 UTC (about 5 minutes after launch). The 05:59:33 UTC image was actually scanning the NASA Kennedy Space Center (station identifier KXMR)  area at 06:00:38 UTC, just after the 06:00 UTC launch time. A faint bright glow of the rocket booster was seen on the 0.5-km resolution Visible (0.64 µm) image; the 1-km resolution Near-Infrared (1.61 µm) rocket signature was much brighter, because this spectral band senses radiation from both visible and infrared portions of the electromagnetic radiation spectrum (which of the two was a stronger contributor to the bright signal is difficult to determine); the 2-km resolution Shortwave Infrared (3.9 µm) image displayed a warm (dark black enhancement) “hot spot”, although it was not exceptionally warm (with a 306.8 K maximum brightness temperature).

A “warm signal” was also observed on the three GOES-16 ABI Water Vapor bands: Lower-Level (7.3 µm), Mid-Level (6.9 µm) and Upper-Level (6.2 µm), as shown below. While water vapor is certainly a by-product of rocket booster combustion, it is important to remember that the Water Vapor bands are first and foremost Infrared bands that sense the brightness temperature of a layer of moisture (which can vary in both altitude and depth, depending on the temperature/moisture profile of the atmosphere and/or the satellite viewing angle). In this case, the atmosphere was relatively dry over the region, with little moisture aloft to attenuate the rocket signature — shifting the roughly-corresponding GOES-13 Sounder (had the GOES-13 Sounder instrument been operational)  water vapor weighting functions (available from this site) to lower altitudes. However, moisture considerations aside, the rocket signature seen on the 05:59:33 UTC water vapor imagery was primarily a thermal anomaly.

GOES-16 Lower-Level Water Vapor (7.3 µm, left), Mid-Level Water Vapor (6.9 µm, middle) and Upper-Level Water Vapor (6.2 µm, right) images [click to enlarge]

GOES-16 Lower-Level Water Vapor (7.3 µm, left), Mid-Level Water Vapor (6.9 µm, middle) and Upper-Level Water Vapor (6.2 µm, right) images [click to enlarge]

McIDAS-V images of GOES-16 Near-Infrared (1.6 µm and 2.2 µm) and Shortwave Infrared (3.9 µm) data at 05:59:33 UTC (below; courtesy of William Straka, SSEC) provided another view of the rocket launch signature.

GOES-16 Near-Infrared (1.61 µm and 2.2 µm) and Shortwave Infrared (3.9 µm) images [click to enlarge]

GOES-16 Near-Infrared (1.61 µm and 2.2 µm) and Shortwave Infrared (3.9 µm) images [click to enlarge]

SpaceX launch of the Crew Dragon Demo-2 mission

May 30th, 2020 |

GOES-16 Low-level (7.3 µm, left), Mid-level (6.9 µm, center) and Upper-level (6.2 µm, left) Water Vapor images [click to play animation | MP4]

GOES-16 Low-level (7.3 µm, left), Mid-level (6.9 µm, center) and Upper-level (6.2 µm, left) Water Vapor images [click to play animation | MP4]

SpaceX launched the Crew Dragon Demo-2 mission from Kennedy Space Center in Florida at 1922 UTC on 30 May 2020. 1-minute Mesoscale Domain Sector GOES-16 (GOES-East) Lower-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images (above) showed the thermal signature of hot combustion byproducts (water vapor and carbon dioxide) in the wake of the Falcon 9 booster engines.

A larger-scale view of GOES-16 Upper-level (6.2 µm) Water Vapor images (below) revealed a signature of the Stage 1 rocket re-entry burn farther offshore at 1930 UTC (the 1930 UTC image was from the other GOES-16 Mesoscale Domain Sector, which was positioned farther north).

GOES-16 Upper-level (6.2 µm) Water Vapor images [click to play animation | MP4]

GOES-16 Upper-level (6.2 µm) Water Vapor images [click to play animation | MP4]

GOES-16 Shortwave Infrared (3.9 µm, left), Mid-level Water Vapor (6.9 µm, center) and Upper-level Water Vapor (6.2 µm, left) images [click to play animation | MP4]

GOES-16 Shortwave Infrared (3.9 µm, left), Mid-level Water Vapor (6.9 µm, center) and Upper-level Water Vapor (6.2 µm, left) images [click to play animation | MP4]

A thermal signature was also seen in GOES-16 Shortwave Infrared imagery (3.9 µm) imagery (above); a separate Shortwave Infrared animation with a different color enhancement is shown below. Note the initial appearance of a hot pixel over the launch site on the 19:22:50 UTC image, which was scanning that particular location at 19:23:20 UTC (shortly after the 19:22 UTC launch time).

GOES-16 Shortwave Infrared (3.9 µm) images [click to play animation | MP4]

GOES-16 Shortwave Infrared (3.9 µm) images (credit: Tim Schmit, ASPB/CIMSS) [click to play animation | MP4]

GOES-16 True Color Red-Green-Blue (RGB) images created using Geo2Grid are shown below — the rocket booster condensation cloud can be seen near the center of the images, beginning as a short linear feature then morphing into a more diffuse C-shaped feature as it drifted slowly eastward over the Atlantic Ocean.

GOES-16 True Color RGGB images [click to play animation | MP4]

GOES-16 True Color RGB images [click to play animation | MP4]

Antares rocket launch from Wallops Flight Facility, Virginia

November 2nd, 2019 |

Sequence of individual GOES-16 ABI spectral bands, from 1358-1406 UTC [click to play animation | MP4]

Sequence of GOES-16 ABI spectral band images, from 1358-1406 UTC [click to play animation | MP4]

A sequence of 1-minute Mesoscale Domain Sector GOES-16 (GOES-East) images from all 16 of the ABI spectral bands during the period 1358-1406 UTC on 02 November 2019 (above) revealed signatures of the launch of an Antares rocket from the Wallops Flight Facility along the eastern shore of Virginia. The signature that was seen in all 16 spectral bands was that of the low-altitude rocket exhaust condensation cloud, which originated at the launch site then drifted northeastward over the Chincoteague area.

In addition, a thermal signature of air that was superheated by the rocket exhaust was evident in Shortwave Infrared (3.9 µm) and Water Vapor (6.2 µm, 6.9 µm and 7.3 µm) images — initially about 2-3 miles east-northeast of Chincoteague at 1401 UTC, and then about 50 miles due east of Wallops Island at 1402 UTC (below). Also apparent on the 1402 UTC Water Vapor images was the cooler signature of the low-altitude exhaust condensation cloud near Chincoteague.

GOES-16 Shortwave Infrared (3.9 µm) and Water Vapor (6.2 µm, 6.9 µm and 7.3 µm) images at 1402 UTC [click to enlarge]

GOES-16 Shortwave Infrared (3.9 µm) and Water Vapor (6.2 µm, 6.9 µm and 7.3 µm) images at 1402 UTC [click to enlarge]

An animation of 16-panel images displaying all of the GOES-16 ABI spectral bands is shown below.

16-panel images of GOES-16 ABI spectral bands from 1400-1406 UTC [click to play animation]

16-panel images of GOES-16 ABI spectral bands from 1400-1406 UTC [click to play animation]

GOES-16 Cloud Top Temperature and Cloud Top Phase products [click to enlarge]

GOES-16 Cloud Top Temperature and Cloud Top Phase products [click to enlarge]

Regarding the northeastward-moving low-altitude rocket exhaust condensation cloud, GOES-16 Cloud Top Temperature and Cloud Top Phase products (above) indicated that the feature was composed of water droplets, exhibiting cloud top temperature values in the 8ºC to 10ºC range. According to 12 UTC rawinsonde data from Wallops Flight Facility, Virginia (below), those temperatures existed at altitudes of 1.8-2.1 km (5900-6900 ft) where there were southwesterly winds of 18-25 knots.

Plot of 12 UTC rawinsonde data from Wallops Flight Facility, Virginia [click to enlarge]

Plot of 12 UTC rawinsonde data from Wallops Flight Facility, Virginia [click to enlarge]

Because of the low early-morning sun angle, the exhaust condensation cloud was casting a shadow farther inland over Virginia, as seen in GOES-16 Visible images (below).

GOES-16

GOES-16 “Red” Visible (0.64 µm) images (courtesy of Tim Schmit, NOAA/NESDIS/ASPB) [click to enlarge]