Strong cyclone near Antarctica
Composites of Infrared imagery (above) and Water Vapor imagery (below) from the AMRC site showed an anomalously strong (MSLP | 925 hPa winds | source) cyclone that was moving southeastward across the South Pacific Ocean toward the coast of Antarctica on 26 March 2019. These composites blend images from both geostationary and polar orbiting satellites; the storm is located in the upper right quadrant of the images. On the Infrared imagery, brighter white shades over much of the middle of Antarctica indicated a very cold surface — in fact, surface air temperatures were as cold as -84ºF over the interior of the continent at 23 UTC. The storm was evident along the southern limb of GOES-16 Full Disk scans, as seen on Mid-level Water Vapor (6.9 µm) and “Red” Visible (0.64 µm) images (below). The location of AMRC AWS station 8930 (Thurston Island) near the coast of Ellsworth Land in West Antarctica is indicated in red. This storm was also evident at the bottom center of a GOES-17 + GOES-16 composite of north-to-south True Color Red-Green-Blue (RGB) swaths of 15-minute illumination at local solar noon — beginning at 12 UTC in the east, and ending at 03 UTC in the west — combined and displayed in a Mollweide projection (below; courtesy of Rick Kohrs, SSEC). A time series of surface observation data from AWS station 8930 on Thurston Island (below) showed that southeasterly winds peaked at 113 knots (58 m/s) late in the day on 26 March as the strong low pressure system approached. According to AMRC staff, this particular AWS is located on a nunatak near Parker Peak in the Walker Mountains (map) — such an exposure is prone to periods of strong winds, requiring a recent retrofitting of special instrumentation designed to withstand and measure higher wind speeds. A closer look with GOES-16 Visible and Low-level Water Vapor (7.3 µm) images (below) revealed small wave perturbations in the cloud field and the eventual formation of a banner cloud as Peter I Island was acting as an obstacle to the strong boundary layer winds south of the storm center. A timely overpass of the Landsat-8 satellite provided a 30-meter resolution Landsat-8 False Color RGB image, viewed using RealEarth (below), of these orographically-induced cloud perturbations. The orographic wave clouds downwind of Peter I Island could also be seen on 375-meter resolution Suomi NPP VIIRS True Color RGB and Infrared Window (11.45 µm) images at 19 UTC and 21 UTC (below).#GOESWest is watching a hurricane-force low that’s headed toward the Antarctic Peninsula. This loop uses what’s known as Air Mass RGB Imagery, which helps distinguish polar from tropical air masses. More imagery: https://t.co/3SWkPqjxr9 pic.twitter.com/nUOKrYtfm1
— NOAA Satellites (@NOAASatellites) March 26, 2019