Tropical Storm Beryl forms in the Atlantic Ocean

July 5th, 2018 |

GOES-16 Band 2 (“Red Visible”, 0.64 µm) Imagery over the Atlantic Ocean, 0915-2130 UTC on 5 July 2018 (Click to animate)

The season’s second named tropical cyclone in the Atlantic Basin has formed.  GOES-16 visible imagery, above (click to play an animated gif), shows Tropical Storm Beryl moving westward just north of 10 º N Latitude between 40 º and 50 º W Longitude.  The infrared imagery (10.3 µm), the Clean Window, below shows a compact storm with cold cloud tops and a central dense overcast.

GOES-16 Band 13 (“Clean Window”, 10.3 µm) Infrared Imagery over the Atlantic Ocean, 0915-2130 UTC on 5 July 2018 (Click to animate)

Much of the tropical Atlantic north of 10 N Latitude shows little convection.  This is because of a Saharan Air Layer, shown below (in red) from a screen capture from the CIMSS Tropical Website (Click here for the latest SAL analysis). An important component of the SAL analysis is the Split Window Difference field (10.3 µm – 12.3 µm) that can diagnose both moisture and dust. The SAL analysis shows considerable dry Saharan air over the Atlantic; Beryl has formed along its southern edge. Compare the SAL analysis to the Split Window Difference field, below, that shows dry air in blue. Similar features are present in both. The GOES-16 Low-Level Water Vapor Infrared Imagery (7.34 µm), here, shows similar features as well. There are multiple ways to diagnose dry air with GOES-16.

Saharan Air Layer (SAL) Analysis, 2100 UTC on 5 July 2018 (Click to enlarge)

GOES-16 Split Window Difference field (10.3 -12.3 µm) Imagery over the Atlantic Ocean, 2100 UTC on 5 July 2018 (Click to enlarge)

NUCAPS Soundings from Suomi NPP can be used to diagnose the thermodynamics of the atmosphere surrounding Beryl. The image below shows NUCAPS Soundings locations between 1500 and 1600 UTC on 5 July 2018, and the points are color-coded to describe the data (as discussed here). A Sounding near 16.3 N, 43.1 W (north of Beryl) shows dryness at mid-levels; total precipitable water is only 1.27″. A Sounding closer to the storm, at 10.3 N, 43.5 W (west of Beryl) is much wetter: total precipitable water is 2.12″. NUCAPS Soundings are available online (over the Continental US only) here.

NUCAPS sounding locations over Beryl at 1500-1600 UTC on 5 July 2018 (Click to enlarge)

Very small (in size) Beryl is forecast to strengthen in the short term. See the National Hurricane Center website and the CIMSS Tropical Website for more information.


==== Update 6 July 2018 ====
Beryl has strengthened and is a hurricane, as of 0900 UTC on 6 July, the first hurricane of the 2018 Atlantic Hurricane season. The sandwich product animation below, courtesy Rick Kohrs and Joleen Feltz, CIMSS, that combines visible (0.64 µm) and clean window infrared (10.3 µm) imagery shows the appearance and subsequent disappearance of a very small eye.

Sandwich product that combines GOES-16 Band 2 (“Red Visible”, 0.64 µm) and Band 13 (“Clean Window”, 10.3 µm) over Beryl, 0815-1515 UTC on 6 July 2018 (Click to enlarge)

Fixed-Grid Format Data flowing in AWIPS

June 19th, 2018 |

AWIPS imagery of GOES-16 Low-Level Water Vapor (7.34 µm) at 1527 and 1532 UTC on 19 June (Click to enlarge)

Until today, GOES-16 Data that flowed into AWIPS was remapped twice: First, from the observational perspective (that is, how the satellite views it) to a spherical fixed-grid projection that approximates the Earth, and then to a Lambert Conformal projection with (for infrared data) 2-km resolution over the Globe. That Lambert Conformal data was then shipped to AWIPS, where the data were again re-projected into the observational perspective desired by the meteorologist.

The 2-km resolution of the data shipped to AWIPS before today is applicable only at the sub-satellite point (nadir) for GOES-16. Thus, the second remap was suggesting better resolution than was warranted by the data. Additionally, the number of data points needed to be sent was very big.

At 1532 UTC on 19 June, the first fixed-grid format data were directly shipped to AWIPS; remapping to a Lambert Conformal projection is no longer done upstream of AWIPS. The toggle above shows the difference in the 7.34 µm “Low-Level” Infrared Water Vapor imagery over the coast of Oregon, near 46º N, 124º W (very far from the GOES-16 sub-satellite point at 0º N, 75.2º W), in the AWIPS CONUS projection.  At 1532 UTC, after the double remap is removed, the pixels are more distinct, and as expected they splay away from the sub-satellite point.

Removing a remapping in the data processing means that pixel-sized extremes — such as overshooting tops, or fires — and gradients will be better represented in the data.  Consider the Clean Window (10.3 µm) Infrared imagery below of strong convection over the Gulf of Mexico east of Texas.  Overshooting tops Brightness Temperatures are colder and the tops themselves more distinct after 1532 UTC than at 1527 UTC.

AWIPS imagery of GOES-16 Clean Window Infrared Data (10.3 µm) from 1347 to 1612 UTC on 19 June. The animation pauses on the last double-remapped image at 1527 UTC, and the first fixed-grid format image at 1532 UTC (Click to enlarge)

 

See also this blog postThis training also discusses the remapping.  And here (or here) is the National Weather Service announcement on the change.

Convection and Flooding over northern Wisconsin

June 17th, 2018 |

GOES-16 ABI Clean Window (10.3 µm) Infrared Imagery, 0200-0559 UTC on 17 June 2018 (Click to animate)

Persistent convection over northern Wisconsin, Minnesota and upper Michigan late Saturday (16 June)/early Sunday (17 June) caused significant flooding.  The animation above shows GOES-16 ABI “Clean Window” Infrared Imagery from 0200-0600 UTC on 17 June.  Note the persistence of the cold overshooting tops over western Bayfield County in northwestern Wisconsin! A longer Infrared animation (0110-1200 UTC) which includes hourly plots of precipitation type (yellow) and SPC storm reports of damaging winds (cyan) is available here. 7-day precipitation departures in some areas were 4 to 8 inches above normal for that period (or 600% of normal).

This link from Wisconsin Emergency Management shows aerial pictures of the flood damage. Of note is the break in US Highway 2 to the west of Ashland WI.

The heavy rains also affected runoff into Lake Superior. MODIS imagery, below, from the MODIS Today site (also available from RealEarth: Link), shows considerable offshore flow of sediment on 19 June (a similar image from 18 June is here, with a toggle between the 2 days here).

True-Color Imagery from Aqua MODIS on 19 June 2018 (Click to enlarge)

A Landsat-8 False-Color image, below, showed pockets of flooding (darker blue) adjacent to the Nemadji River in Superior WI on the morning of 19 June — water also cover a portion of US Highway 2/53. The Nemadji River had crested in Superior at a record 29.5 feet on the evening of 17 June (NWS Duluth summary).

Landsat-8 False-Color image (Click to enlarge)

False-Color image from Landsat-8 on 19 June 2018 (Click to enlarge)


============================ Added 22 June ==============================
 

NOAA’s Hydrometeorological Design Studies Center (Link) created an Exceedance Probability Analysis for this event at 6-hour, 24-hour and 72-hout time spans, available here (from this link). Probabilities suggest this was an exceedingly rare event.

The continuation of sediment flow into Lake Superior could be seen in a series of daily MODIS True-Color images here.

Tornado in Luzerne County, Pennsylvania

June 14th, 2018 |

GOES-16 ABI Band 2 (Red Visible, 0.64 µm) over northeastern Pennsylvania. Luzerne County is outlined in Yellow, and Wilkes-Barre’s location is highlighted as a yellow box (Click to animate)

A confirmed tornado struck Wilkes-Barre in Luzerne County in northeastern Pennsylvania shortly after sunset on 13 June 2018 (at about 0215 UTC). Visible imagery, above, shows the line of thunderstorms approaching the region before sunset. This video, from Citizens Voice Reporter Nico Rossi, shows some of the damage.

NOAA/CIMSS ProbTor captured the tornadic cell very well (Click this link for a discussion that includes infrared satellite animations). Click here for real-time access to ProbTor.

1-minute Mesoscale Sector GOES-16 Band 13 (Clean Infrared Window, 10.3 µm) images with plots of SPC storm reports are shown below. The Wilkes-Barre PA tornado is plotted as a red T on the 0200 UTC image.

GOES-16 Band 13 (Clean Infrared Window, 10.3 µm) images, with SPC storm reports plotted in red [click to animate]

GOES-16 Band 13 (Clean Infrared Window, 10.3 µm) images, with SPC storm reports plotted in red [click to animate]

Below is a 1-km resolution Terra MODIS Band 31 (Infrared Window, 11.0 µm) image from shortly after the Luzerne County tornado, showing the line of convection that had developed in advance of a cold front. The 2 overlapping SPC storm reports (listed as damaging winds, with report times of 2008 and 2015 UTC) for the Wilkes-Barre event are in the center of the image. The minimum cloud-top infrared brightness temperature was -66ºC.

Terra MODIS Band 31 (Infrared Window, 11.0 µm) image, with plots of cumulative SPC storm reports and the 03 UTC position of the surface cold front [click to enlarge]

Terra MODIS Band 31 (Infrared Window, 11.0 µm) image, with plots of cumulative SPC storm reports and the 03 UTC position of the surface cold front [click to enlarge]