Alberto

May 25th, 2018 |

GOES-16 ABI Band 10 (7.34 µm, low-level water vapor) Infrared imagery, 0822-1632 UTC on 25 May 2018 (Click to animate)

The National Hurricane Center has assigned the name ‘Alberto’ to region of low pressure that has persisted near the northwest Caribbean Sea for the past week. The low-level water vapor (7.34 µm) animation, above, shows abundant mid-tropospheric moisture to the east of the system. Dryer mid-level conditions are apparent west of Alberto: the storm structure is very asymmetric. Sheared systems such as this one typically do not strengthen quickly.

A plot of shear (from this site), below, shows Alberto in a region of westerly shear, with a forecast path towards a region that currently has higher shear — part of which is outflow. However, forecast models suggest the shear along the forecast path will decrease with time.  Sea-surface temperatures are warm enough to support tropical cyclones, and the forecast path is towards warmer waters.

Shear Analysis and Satellite imagery at 1500 UTC on 25 May 2018 (Click to enlarge)

Visible imagery, below, shows one low-level circulation center (others may be masked by the convection to the east) that is south and west of the main convection over the Caribbean.

GOES-16 ABI Visible (0.64 µm) Imagery, 1137-1642 UTC on 25 May 2018 (Click to animate)

Suomi-NPP overflew this region at 0723 UTC, and a toggle between the Window Channel Infrared (11.45 µm) and the Day Night Band Visible (0.70 µm) imagery (courtesy William Straka) is shown below. The low-level circulation is apparent in the Day Night Band to the west of the deep convection over the northwest Caribbean.

Suomi-NPP VIIRS Infrared (11.45 µm) and Day Night Band Visible (0.70 µm) Imagery at 0735 UTC on 25 May 2018 (Click to enlarge)

Total Precipitable Water, 1600 UTC on 24 May 2018 to 15 UTC on 25 May 2018 (Click to enlarge)

A MIMIC Total Precipitable Water animation, above, shows abundant moisture over the northwest Caribbean. As Alberto lifts to the north, that moisture will shift north as well, and flooding rains are possible over the southeastern United States. Flood Watches have been raised over Louisiana, Mississippi, Alabama and Georgia (below, from this site).

Hazards at 1700 UTC on 25 May 2018 (Click to enlarge)

The Geostationary Lightning Mapper (GLM) on GOES-16 observed lightning in the deep convection to the east of the system center. GLM is overlain on both infrared (top) and visible (bottom) imagery below (animations courtesy Dave Santek, CIMSS). The updating infrared animations are available here. GLM data for this system can also be viewed in RealEarth.

GOES-16 Infrared (10.3 µm) Imagery over Alberto at 5-minute time-steps, 1747 – 1832 UTC,  along with GLM observations of group density plotted every minute (See legend in image for times of GLM plots) (Click to enlarge)

GOES-16 Visible (0.64 µm) Imagery over Alberto at 5-minute time-steps, 1747 – 1832 UTC, along with GLM observations of group density plotted every minute (See legend in image for times of GLM plots) (Click to enlarge)

Updates on this system are sent every six hours from the National Hurricane Center. You can find more information there, or at the CIMSS Tropical Weather Website.

Cyclone Mekunu in the northwest Indian Ocean

May 23rd, 2018 |
Meteosat-8 Infrared 10.8 µm imagery, 1630 UTC 22 May - 1715 UTC 23 May 2018 (Click to animate)

Meteosat-8 Infrared 10.8 µm imagery, 1630 UTC 22 May – 1715 UTC 23 May 2018 (Click to animate)

Cyclone Mekunu in the northwest Indian Ocean was approaching Oman and Yemen on the Arabian Peninsula on 23 May 2018, as shown in the animation above. Morphed Microwave Imagery, below, (from this site) for the 24 hours ending at 1900 UTC on 23 May 2018, shows the storm at the periphery of deep tropical moisture.  This moisture will likely lead to devastating floods in the desert regions of Oman and Yemen as the storm approaches. (News Link 1, 2 and 3).  Cyclone Chapala that affected the region in 2015 also caused devastating floods.

Microwave-based Total Precipitable Water for 24 hours ending 1900 UTC on 23 May 2018 (Click to enlarge)

Microwave imagery, below, (from this site) shows how the organization of the storm changed in the 24 hours ending around 1600 UTC on 23 May 2018.   AMSU microwave imagery for this storm can be found here (off of this website).

Morphed Microwave Imagery over Mekunu for the 24 hours ending at 1600 UTC (Click to enlarge)

Satellite intensity estimates for the storm are shown below (taken from this website). The Meteosat-8 infrared animation, above, shows a periodic increase and decay in the strong convection near the center. Satellite estimates of strength (below) show a consistent lowering of the central pressure of the storm, however; winds have consistently increased.

Satellite-based estimates of Mekunu’s central pressure (Click to enlarge)

Mekunu is traversing a region with very high Sea Surface Temperatures and modest shear. Significant weakening is not forecast.

Sea Surface Temperatures and Shear over the northwest Indian Ocean (Click to enlarge)

More information on this unusual tropical cyclone can be found at the CIMSS Tropical Weather Website (link) and the CIRA Tropical Weather Website (link).

=============== Added, 24 May 2018 ==============

Suomi-NPP overflew Mekunu at 2133 UTC on 23 May 2018, and the toggle below (between the Day Night Band and the 11.45 µm infrared;  Click here for a zoomed-in toggle between the Day Night Band and the 11.35 µm infrared image) shows the storm well-illuminated by a waxing gibbous Moon.  Strong convection with lightning is apparent north of the island of Socotra.  (VIIRS imagery courtesy Will Straka, CIMSS)

Suomi NPP VIIRS Infrared (11.45 µm) and Day Night Band Visible (0.70 µm) imagery over Mekunu, 2133 UTC on 23 May 2018 (Click to enlarge)

=============== Added, 25 May 2018 ==============

Mekunu is approaching the coast of Oman on 25 May 2018 from the southeast.  The animation below of visible (0.6 µm, left) and Infrared (10.8 µm ,right) imagery shows a compact storm with deep convection around an eye.  Microwave Imagery for the 24 hours ending at 1300 UTC on 25 May (here, from this site) suggest Mekunu is strengthening as it nears the coast. (Satellite-estimated winds and pressure also suggest strengthening near landfall).

Meteosat-8 Visible (0.6 µm, left) and Infrared (10.8 µm, right) imagery over Mekunu, 1145 UTC on 24 May to 1215 UTC on 25 May 2018 (Click to animate)

Visible Imagery from 1045 to 1430 UTC, below, suggests landfall will occur shortly after sunset east of the Oman/Yemen border.  Infrared Imagery (at bottom) shows a landfall near 1800 UTC.

Meteosat-8 Visible (0.6 µm, left) imagery over Mekunu, 1045 UTC to 1430 UTC on 25 May 2018 (Click to animate)

Meteosat-8 Infrared (10.8 µm, left) imagery over Mekunu, 1415 UTC to 1830 UTC on 25 May 2018 (Click to animate)

Surface observations from Salalah, in southern Oman (click here), show sustained tropical-storm force winds, with gusts to 60 knots, from the east for several hours today. Normal annual precipitation for the region is about 5″.

ACSPO SSTs in AWIPS at WFO Guam

April 24th, 2018 |

ACSPO SSTs constructed from AVHRR, MODIS and VIIRS data from various overpasses at Guam on 18 April 2018 (Click to enlarge)

Sea Surface Temperatures (SSTs) produced from the Advanced Clear-Sky Processor for Oceans (ACSPO) are now being created in real time at the National Weather Service Forecast Office on Guam (where the National Weather Service day begins). The algorithm is applied to data broadcast from polar orbiter satellites and received at the Direct Broadcast antenna sited at the forecast office.  Because there are so many polar orbiters broadcasting data — NOAA-18, NOAA-19, Metop-A, Metop-B, Suomi-NPP, Terra, Aqua — cloudy pixels on one pass are typically filled in with data from a subsequent pass.  When ACSPO software for NOAA-20 is available, data from that satellite will be incorporated as well.  The result is a very highly calibrated, accurate depiction of high spatial resolution tropical Pacific SSTs.  A composite created every 12 hours from the imagery is also available at the forecast office.

 

Cyclone Kelvin makes landfall in Australia

February 18th, 2018 |

Himawari-8 Visible (0.64 µm, left) and Infrared Window (10.4 µm, right) images, with hourly surface plots at Broome [click to play Animated GIF | MP4 also available]

Himawari-8 Visible (0.64 µm, left) and Infrared Window (10.4 µm, right) images, with hourly surface plots at Broome, Australia [click to play Animated GIF | MP4 also available]

Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images (above) showed Cyclone Kelvin as it made landfall in Western Australia as a Category 1 storm on 18 February 2018. Kelvin continued to intensify shortly after making landfall, with estimated winds of 80 gusting to 100 knots — and a distinct eye feature could be seen in the Visible and Infrared imagery (as well as Broome radar data).

A longer animation of Himawari-8 Infrared Window (10.4 µm) images (below) revealed a very large convective burst as Kelvin meandered near the coast early on 17 February — periodic cloud-top infrared brightness temperatures of -90 ºC or colder were seen. After making landfall, the eye structure eventually deteriorated by 18 UTC on 18 February.

Himawari-8 Infrared Window (10.4 µm) images, with hourly surface plots [click to play MP4 | Animated GIF also available]

Himawari-8 Infrared Window (10.4 µm) images, with hourly surface plots [click to play MP4 | Animated GIF also available]

The MIMIC-TC product (below) showed the development of Kelvin’s compact eye during the 17 February – 18 February period; the eye was well-defined around the time of landfall (2147 UTC image on 17 February), and persisted for at least 18 hours (1556 UTC image on 18 February) until rapidly dissipating by 21 UTC.

MIMIC-TC morphed microwave imagery [click to enlarge]

MIMIC-TC morphed microwave imagery [click to enlarge]

Himawari-8 Deep Layer Wind Shear values remained very low — generally 5 knots or less — prior to, during and after the landfall of Kelvin, which also contributed to the slow rate of weakening. In addition, an upward moisture flux from the warm/wet sandy soil of that region helped Kelvin to intensify after landfall; land surface friction was also small, since that portion of Western Australia is rather flat.

Himawari-8 Water Vapor images, with Deep Layer Wind Shear product [click to enlarge]

Himawari-8 Water Vapor images, with Deep Layer Wind Shear product [click to enlarge]

The eye of Cyclone Kelvin could also be seen in Terra MODIS and Suomi NPP VIIRS True-color Red-Green-Blue (RGB) images, viewed using RealEarth (below). The actual times of the Terra and Suomi NPP satellite overpasses were 0154 UTC and 0452 UTC on 18 February, respectively.

Terra MODIS and Suomi NPP VIIRS True-color RGB images [click to enlarge]

Terra MODIS and Suomi NPP VIIRS True-color RGB images [click to enlarge]