This website works best with a newer web browser such as Chrome, Firefox, Safari or Microsoft Edge. Internet Explorer is not supported by this website.

Strong storm in the Gulf of Alaska

McIDAS images of 4-km resolution GOES-15 6.5 µm water vapor channel data (above; click image to play animation) showed the complex pattern of intensification of a storm over the western Gulf of Alaska on 06 August 2013. According to the NOAA NWS Ocean Prediction Center, this... Read More

GOES-15 6.5 µm water vapor channel images (click image to play animation)

GOES-15 6.5 µm water vapor channel images (click image to play animation)

McIDAS images of 4-km resolution GOES-15 6.5 µm water vapor channel data (above; click image to play animation) showed the complex pattern of intensification of a storm over the western Gulf of Alaska on 06 August 2013. According to the NOAA NWS Ocean Prediction Center, this was the first cyclone to produce storm-force winds (greater than 47 knots) over the North Pacific Ocean since 21 June 2013.

AWIPS images of 1-km resolution Suomi NPP VIIRS 11.45 µm IR channel and 0.64 µm visible channel data with an overlay of the corresponding surface analysis (below) showed the cloud features associated with the storm system at 23:14 UTC.

Suomi NPP VIIRS 11.45 µm IR and 0.64 µm visible images (with surface analysis)

Suomi NPP VIIRS 11.45 µm IR and 0.64 µm visible images (with surface analysis)

View only this post Read Less

Severe thunderstorms in northwestern Kansas

 AWIPS images of 1-km resolution GOES-13 0.63 µm visible channel images with automated overshooting top detection icons (above; click image to play animation) showed the development of a large mesoscale convective system across northwestern Kansas during the afternoon hours on 05 August 2013.... Read More

GOES-13 0.63 µm visible channel images with overshooting top detection icons (click image to play animation)

GOES-13 0.63 µm visible channel images with overshooting top detection icons (click image to play animation)

 

AWIPS images of 1-km resolution GOES-13 0.63 µm visible channel images with automated overshooting top detection icons (above; click image to play animation) showed the development of a large mesoscale convective system across northwestern Kansas during the afternoon hours on 05 August 2013. Note that the surface air temperature at Goodland, Kansas (KGLD) dropped from 91º F at 19 UTC to 69º F at 20 UTC (with southeasterly winds gusting to 34 knots).

4-km resolution GOES-13 10.7 µm IR channel images with automated overshooting top detection icons (below; click image to play animation) revealed the formation of a very broad and well-defined “enhanced-V” storm top signature, with cloud-top IR brightness temperatures becoming as cold as -80º C at 23:15 UTC. Overshooting top detection began after 19:45 UTC, once GOES-13 cloud-top IR brightness temperatures became -71º C or colder.

GOES-13 10.7 µm IR channel images with overshooting top detection icons (click image to play animation)

GOES-13 10.7 µm IR channel images with overshooting top detection icons (click image to play animation)

During the early stages of convective development, GOES-13 10.7 µm IR images combined with 15-minute cloud top cooling rates (below) showed the development of significant cloud top cooling rates along the Colorado/Kansas border area at 18:15 UTC (prior to the formation of weak, brief landspout tornadoes just northeast of Goodland, Kansas during the 18:28-18:40 UTC period) — a maximum cloud top cooling rate of 35.3º C in 15 minutes was detected at 18:45 UTC.

GOES-13 10.7 µm IR channel images with Cloud Top Cooling Rates

GOES-13 10.7 µm IR channel images with Cloud Top Cooling Rates

A comparison of 1-km resolution Soumi NPP VIIRS 11.45 µm IR channel and 4.-km resolution GOES-13 10.7 µm images (below) demonstrated the ability of higher spatial resolution VIIRS data to detect much colder IR brightness temperatures associated with the more vigorous overshooting tops (-82º C on VIIRS, vs -71º C on GOES). In addition, a northwestward GOES image parallax shift was seen, due to to the large viewing angle of the GOES-13 satellite positioned at 75º W longitude. Shortly after the time of these images, this storm produced hail of 1.0 inch in diameter at 20:11, 20:21, and 20:54 UTC (SPC storm reports)

Suomi NPP VIIRS 11.45 µm IR and GOES-13 10.7 µm IR images

Suomi NPP VIIRS 11.45 µm IR and GOES-13 10.7 µm IR images

Comparisons of 1-km resolution POES AVHRR Cloud Top Temperature and Cloud Top Height products at 20:21 UTC (above) and 21:16 UTC (below) showed that the coldest cloud top temperatures (-85º C and -87º C, respectively) were seen in regions where the maximum cloud top height values were generally around 15 km. It is likely that the most vigorous overshooting tops associated with the coldest cloud top temperature values were as much as 2-3 km higher than this mean 15 km thunderstorm anvil cloud top height. Conversely, cloud top height values were around 13 km in the “warm wake” region immediately downwind of the coldest overshooting tops.

View only this post Read Less

Saharan Air Layer outbreak over the Atlantic Ocean

McIDAS images of GOES-13 0.63 µm visible channel data (above; click image to play animation) revealed the hazy signature of a dust-laden Saharan Air Layer (SAL) that was propagating westward across the North Atlantic Ocean during the 01 August – 02 August 2013 period. The full disk satellite perspective helped... Read More

GOES-13 0.63 µm visible channel images (click image to play animation)

GOES-13 0.63 µm visible channel images (click image to play animation)

McIDAS images of GOES-13 0.63 µm visible channel data (above; click image to play animation) revealed the hazy signature of a dust-laden Saharan Air Layer (SAL) that was propagating westward across the North Atlantic Ocean during the 01 August – 02 August 2013 period. The full disk satellite perspective helped to emphasize how large the areal coverage of this particualr SAL outbreak was. A closer view of the leading edge of the SAL feature is available here.

The SAL moved over Puerto Rico during the day on 02 August, as seen by the transition to a very warm and dry signature just above the 850 hPa pressure level in consecutive rawinsonde data profiles (below) from San Juan (TJSJ).

The Meteosat-10 Saharan Air Layer product (below; click image to play animation) showed the strong westward push of the SAL during the 31 July – 02 August time period.

Meteosat-10 Saharan Air Layer (SAL) product (click image to play animation)

Meteosat-10 Saharan Air Layer (SAL) product (click image to play animation)

 

View only this post Read Less

Convective outflow boundary initiates new convection over Kansas

AWIPS images of 1-km resolution GOES-13 0.63 µm visible channel data (above; click image to play animation) showed an undular bore marking a surface-based convective outflow boundary which formed over southwestern Nebraska early in the day on 31 July 2013 — this outflow... Read More

GOES-13 0.63 µm visible channel images (click image to play animation)

GOES-13 0.63 µm visible channel images (click image to play animation)

AWIPS images of 1-km resolution GOES-13 0.63 µm visible channel data (above; click image to play animation) showed an undular bore marking a surface-based convective outflow boundary which formed over southwestern Nebraska early in the day on 31 July 2013 — this outflow boundary then propagated southwestward during the day and acted as a focus for the formation of severe thunderstorms over southwestern Kansas later that afternoon (SPC storm reports).

The southwestward-propagating outflow boundary / undular bore feature was also seen on 4-km resolution GOES-13 6.5 µm water vapor channel imagery (below; click image to play animation).

GOES-13 6.5 µm water vapor channel images (click image to play animation)

GOES-13 6.5 µm water vapor channel images (click image to play animation)

The GOES-13 imager 6.5 µm water vapor channel weighting function calculated using the 12 UTC rawinsonde data from Dodge City, Kansas (below) indicated that the weighting function peaked much lower in the atmosphere (around 500 hpa) than normal — this allowed a thermal signal (albeit a faint one) of the boundary layer convective outflow boundary cloud features to be seen on the water vapor imagery.

GOES-13 water vapor channel weighting function plot (using Dodge City, Kansas rawinsonde data)

GOES-13 water vapor channel weighting function plot (using Dodge City, Kansas rawinsonde data)

A good view of the undular bore (which was trailing the leading edge of the convective outflow boundary) could be seen on a comparison of 1-km resolution MODIS 0.64 µm visible channel and 11.0 µm IR channel images at 17:05 UTC (below).

MODIS 0.64 µm visible channel and 11.0 µm IR channel images

MODIS 0.64 µm visible channel and 11.0 µm IR channel images

New thunderstorms formed along the old convective outflow boundary (as it encountered increasing instability across southwestern Kansas during the afternoon hours), as seen on 1-km resolution Suomi NPP VIIRS 0.64 µm visible channel and 11.45 µm IR channel images (below). This storm was producing 1-inch diameter hail and wind gusts of 50-60 mph.

Suomi NPP VIIRS 0.64 µm visible channel and 11.45 µm IR channel mages, with SPC reports of hail

Suomi NPP VIIRS 0.64 µm visible channel and 11.45 µm IR channel mages, with SPC reports of hail

A comparison of the 1-km resolution Suomi NPP VIIRS 11.45 µm IR channel image with the corresponding 4-km resolution GOES-13 10.7 µm IR channel image (below) displayed an unusually large 30-degree difference between the coldest cloud-top IR brightness temperatures of the northernmost of the newly-formed thunderstorms in Kansas (-92º C on VIIRS, vs -62º C on GOES).

VIIRS 11.45 µm IR channel and GOES-13 10.7 µm IR channel images

VIIRS 11.45 µm IR channel and GOES-13 10.7 µm IR channel images

 

View only this post Read Less