This website works best with a newer web browser such as Chrome, Firefox, Safari or Microsoft Edge. Internet Explorer is not supported by this website.

2 West Pacific storms, as seen using 3 Himawari-8 water vapor bands

The Himawari-8 AHI instrument has 3 water vapor bands, centered at 6.2 µm, 6.9 µm, and 7.3 µm. Images of these 3 water vapor bands (above; also available as a large 126 Mbyte animated GIF) showed the intensification of a mid-latitude cyclone as it moved east of Japan during the 17-19... Read More

Himawari-8 Water Vapor images: 6.2 µm (top), 6.9 µm (middle), and 7.3 µm (bottom) - [click to play MP4 animation]

Himawari-8 Water Vapor images: 6.2 µm (top), 6.9 µm (middle), and 7.3 µm (bottom) – [click to play MP4 animation]

The Himawari-8 AHI instrument has 3 water vapor bands, centered at 6.2 µm, 6.9 µm, and 7.3 µm. Images of these 3 water vapor bands (above; also available as a large 126 Mbyte animated GIF) showed the intensification of a mid-latitude cyclone as it moved east of Japan during the 17-19 March 2016 period. Surface analyses of this storm produced by the Ocean Prediction Center are shown below.

West Pacific surface analyses [click to play animation]

West Pacific surface analyses [click to play animation]

—————————————————————————————————

Himawari-8 Water Wapor images: 7.3 µm (left), 6.9 µm (center), and 6.2 µm (right) - [click to play MP4 animation]

Himawari-8 Water Wapor images: 7.3 µm (left), 6.9 µm (center), and 6.2 µm (right) – [click to play MP4 animation]

Several days earlier (during 14-16 March), another storm just off the coast of Japan rapidly intensified to hurricane force as it moved north-northeastward toward the southern tip of the Kamchatka Peninsula. A comparison of the three Himawari-8 AHI water vapor bands (above; also available as a large 109 Mbyte animated GIF) depicted varying aspects of the storm evolution. The corresponding Ocean Prediction Center surface analyses are shown below.

West Pacific surface analyses [click to play animation]West Pacific surface analyses [click to play animation]

West Pacific surface analyses [click to play animation]

The GOES-R ABI instrument will have nearly identical water vapor bands; plots of their weighting functions (below, from this site) show that each of these 3 spectral bands senses radiation from different layers of the atmosphere. This example assumes a typical cold mid-latitude winter temperature/moisture vertical profile, with a satellite view angle (or “zenith angle”) of 45 degrees.

GOES-R ABI water vapor band weighting function plots

GOES-R ABI water vapor band weighting function plots

View only this post Read Less

Undular bore over Texas

GOES-15 (GOES-West) Visible (0.63 µm) images (above) showed the wave clouds associated with an undular bore moving southeastward across Texas during the day on 18 March 2016. The leading undular bore (and packet of solitary waves behind it) were propagating ahead of the advancing cold front (reference).A nighttime Suomi NPP VIIRS Day/Night... Read More

GOES-15 Visible (0.63 µm) images with surface plots [click to play animation]

GOES-15 Visible (0.63 µm) images with surface plots [click to play animation]

GOES-15 (GOES-West) Visible (0.63 µm) images (above) showed the wave clouds associated with an undular bore moving southeastward across Texas during the day on 18 March 2016. The leading undular bore (and packet of solitary waves behind it) were propagating ahead of the advancing cold front (reference).

A nighttime Suomi NPP VIIRS Day/Night Band image at 0814 UTC or 3:14 am local time (below) showed the early stage of bore wave cloud formation over the Texas Panhandle. Due to ample illumination from the Moon (in the Waxing Gibbous phase, at 78%  of Full), this example illustrated the “visible image at night” capability of the Day/Night Band.

Suomi NPP VIIRS Day/Night Band (0.7 µm) image [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) image [click to enlarge]

CLAVR-x POES AVHRR Cloud Top Temperature and Cloud Top Height products (below) indicated values of around +6º C and 2 km, respectively, for the undular bore wave cloud features ahead of the cold front at 1714 UTC.

POES AVHRR Cloud Top Temperature and Cloud Height products [click to enlarge]

POES AVHRR Cloud Top Temperature and Cloud Height products [click to enlarge]

The 2 km cloud top height was consistent with the depth of the stable layers seen above the surface seen in rawinsonde data profiles at Midland (KMAF) and Forth Worth (KFWD), 2 locations which were ahead of the cold frontal boundary at 1200 UTC.

Midland (KMAF) and Fort Worth (KFWD) rawinsonde data profiles at 1200 UTC [click to enlarge]

Midland (KMAF) and Fort Worth (KFWD) rawinsonde data profiles at 1200 UTC [click to enlarge]

View only this post Read Less

Severe Cyclone Emeraude in the Indian Ocean

A plot of the Advanced Dvorak Technique intensity estimate for Cyclone Emeraude in the Indian Ocean (above) shows that the storm rapidly intensified to Category 4 intensity on 17 March 2016.Himawari-8 AHI Visible (0.64 µm) and Infrared Window (10.4 µm) images (below; also available as a large 31-Mbyte animated GIF) revealed the formation... Read More

Advanced Dvorak Technique intensity plot for Cyclone Emeraude [click to enlarge]

Advanced Dvorak Technique intensity plot for Cyclone Emeraude [click to enlarge]

A plot of the Advanced Dvorak Technique intensity estimate for Cyclone Emeraude in the Indian Ocean (above) shows that the storm rapidly intensified to Category 4 intensity on 17 March 2016.

Himawari-8 AHI Visible (0.64 µm) and Infrared Window (10.4 µm) images (below; also available as a large 31-Mbyte animated GIF) revealed the formation of a well-defined eye during the day.

Himawari-8 Visible (0..64 µm, top) and Infrared Window (10.4 µm, bottom) images [click to play MP4 animation]

Himawari-8 Visible (0..64 µm, top) and Infrared Window (10.4 µm, bottom) images [click to play MP4 animation]

Nighttime images of Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) data at 1859 UTC (below, courtesy of William Straka, SSEC) showed the ragged appearance of the eye at that time, with an isolated convective burst that had developed well west of the eye.

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

View only this post Read Less

Strong storm over the Upper Midwest and western Great Lakes

A strong storm rapidly deepened as it moved northeastward across the Upper Midwest and western Great Lakes on 16 March 2016. GOES-13 Water Vapor (6.5 µm) images (above) showed the evolution of the system as the cloud shield expanded and became more elongated in a west-to-east orientation. On the previous day, this... Read More

GOES-13 Water Vapor (6.5 µm) images, with surface analyses [click to play animation]

GOES-13 Water Vapor (6.5 µm) images, with surface analyses [click to play animation]

A strong storm rapidly deepened as it moved northeastward across the Upper Midwest and western Great Lakes on 16 March 2016. GOES-13 Water Vapor (6.5 µm) images (above) showed the evolution of the system as the cloud shield expanded and became more elongated in a west-to-east orientation. On the previous day, this storm produced widespread hail and tornadoes from far eastern Iowa into northern and central Illinois (SPC storm reports).

A closer view of GOES-13 Visible (0.63 µm) images with METAR surface reports (below) revealed the strong winds caused by the tight pressure gradient — a peak wind gust of 61 mph was recorded at Waukesha in southeastern Wisconsin, with multiple power outages across the region caused by wind-related tree damage. Heavy rain (as much as 2-3 inches) produced some minor river flooding in various parts of Wisconsin; across northern Wisconsin, northeastern Minnesota, and the Upper Peninsula of Michigan the rain changed to snow, with as much as 18.5 inches accumulating at Redridge, Michigan, 13.0 inches at Lutsen, Minnesota, and 8.0 inches at Poplar and Sand Bay, Wisconsin. The weight of the wet snow was causing tree limbs to fall, with additional power outages being reported.

GOES-13 Visible (0.63 µm) images [click to play animation]

GOES-13 Visible (0.63 µm) images [click to play animation]

With the strong winds associated with this storm, there were also scattered pilot reports of moderate turbulence across the region, including 2 reports of severe turbulence over southern Wisconsin as seen below.

GOES-13 Water Vapor (6.5 µm) image, with pilot report of severe turbulence [click to enlarge]

GOES-13 Water Vapor (6.5 µm) image, with METAR surface reports and a pilot report of severe turbulence [click to enlarge]

GOES-13 Water Vapor image, with pilot report of severe turbulence [click to enlarge]

GOES-13 Water Vapor image, with METAR surface reports and a pilot report of severe turbulence [click to enlarge]

View only this post Read Less