This website works best with a newer web browser such as Chrome, Firefox, Safari or Microsoft Edge. Internet Explorer is not supported by this website.

Using NUCAPS to nowcast convective development

The animation above shows the 1721 UTC GOES-16 Visible (0.64 µm) image along with NUCAPS profile locations from a NOAA-20 overpass. Convection is approaching from the west, from central Wisconsin. NUCAPS soundings can give a good estimate for how far south that convective line might develop, and a north-south series... Read More

GOES-16 Visible Imagery (0.64 µm) at 1721 UTC on 27 August 2019. A swath of NOAA-20 NUCAPS soundings from 1718 UTC is also shown, and individual profiles from the Upper Peninsula of Michigan southeastward to southwest Lower Michigan are plotted. (Click to enlarge)

The animation above shows the 1721 UTC GOES-16 Visible (0.64 µm) image along with NUCAPS profile locations from a NOAA-20 overpass. Convection is approaching from the west, from central Wisconsin. NUCAPS soundings can give a good estimate for how far south that convective line might develop, and a north-south series of profiles is shown in the imagery above.  Note in particular how soundings show increasing mid-level stability;  a strong inversion between becomes apparent between the NUCAPS Sounding just south of Door County on the western short of Lake Michigan and over eastern Lake Michigan on the Michigan shoreline.  This thermodynamic snapshot would argue that convection should not develop much farther south than central Lake Michigan!  the 1926 UTC Visible image, below, toggled with radar, confirms this forecast.

GOES-16 Visible Imagery (0.64 µm) at 1926 UTC on 27 August 2019 — toggled with Base Reflectivity at 1924 UTC (Click to enlarge)

 


NUCAPS from one satellite will periodically, north of about 40 N, supply profiles on two consecutive passes.  That happened on 27 August over Lake Michigan as might be expected given that the 1718 UTC pass had its westernmost swath over Lake Michigan.  The animation below shows the swath from 1901 UTC.  The strengthening inversion as you move south over Lake Michigan is apparent at 1901 UTC as well.

GOES-16 Visible Imagery (0.64 µm) at 1906 UTC on 27 August 2019. A swath of NOAA-20 NUCAPS soundings from 1901 UTC is also shown, and individual profiles over Lake Michigan Michigan are plotted. (Click to enlarge)

View only this post Read Less

VIIRS imagery and NUCAPS profiles near the North Pole

A sequence of 4 consecutive Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.4 µm) images (above) showed a small swirl of clouds associated with a weak area of low pressure near the North Pole — north of Greenland (surface analyses) — on 22 August 2019.There... Read More

Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images [click to enlarge]

A sequence of 4 consecutive Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.4 µm) images (above) showed a small swirl of clouds associated with a weak area of low pressure near the North Pole — north of Greenland (surface analyses) — on 22 August 2019.

Suomi NPP VIIRS Visible (0.64 µm) images, with plots of NUCAPS availability [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm) images, with plots of NUCAPS availability [click to enlarge]

There were Suomi NPP NUCAPS soundings available in the vicinity of the surface low (above) — profiles from the 4 squared green dot locations (green dots indicate successful sounding retrievals from both the CrIS and ATMS instruments) which were closest to both the surface low and the North Pole (below) revealed characteristically-low arctic tropopause heights of around 7-8 km, and surface temperatures dropping to below freezing at the 2 most northerly points of 88.28º and 88.57º N latitude. Note: the Suomi NPP (SNPP) CrIS anomaly that began on 24 March 2019 was resolved via a switch to the redundant Side-2 electronics on 24 June — so CrIS data once again became available for incorporation into SNPP NUCAPS soundings beginning on 01 August. Training material for NUCAPS in AWIPS is available here.

NUCAPS temperature (red) and dew point (green) profiles [click to enlarge]

NUCAPS temperature (red) and dew point (green) profiles [click to enlarge]

According to GCOM-W1 AMSR2 data (source), this weak surface low was over a portion of the Arctic Ocean where sea ice concentration was still high (below).

GCOM-W1 AMSR2 sea ice concentration [click to enlarge]

GCOM-W1 AMSR2 sea ice concentration [click to enlarge]

View only this post Read Less

Split Window Difference fields over the Ocean

The Split Window Difference field (10.3 µm – 12.3 µm), shown above in the south Pacific around Samoa and American Samoa (Leone is on the island of Tutuila just west of 170º W Longitude; Fitiuta is on the island of Ta’u just east of 170º W Longitude), can be used... Read More

GOES-17 ABI Split Window Difference (10.3 – 12.3) at 0100 UTC on 20 August 2019 (Click to enlarge)

The Split Window Difference field (10.3 µm – 12.3 µm), shown above in the south Pacific around Samoa and American Samoa (Leone is on the island of Tutuila just west of 170º W Longitude; Fitiuta is on the island of Ta’u just east of 170º W Longitude), can be used to estimate the horizontal distribution of water vapor. The Split Window Difference can give a good estimate of moisture distribution in the atmosphere over the ocean where conventional moisture measurements are limited. The image above shows greater values (3.5 – 4 K, in yellow and orange) over the northern part of the image and smaller values (2-3 K, in yellow and blue) over the southern part of the image, divided by a band of cloudiness that passes through 20º S, 170º W.

NOAA-20 overflew this region at 0056 UTC, and NUCAPS profiles were available, as shown below.

GOES-17 ABI Split Window Difference (10.3 – 12.3) at 0100 UTC on 20 August 2019 along with NUCAPS Sounding locations (Click to enlarge)

The animation below steps through soundings at different locations. Total precipitable water as determined from the sounding is indicated. In the region where the Split Window Difference field was around 4 K, precipitable water values were in the 1.5-1.7″ range; in regions where the Split Window Difference was closer to 2 K, precipitable water values were closer to 0.5-0.75″.

NUCAPS Vertical Profiles at different locations, as noted. (Click to animate)

Microwave-only data, shown below from the MIMIC website, shows a sharp gradient at 20º S, 170º W.

MIMIC Total Precipitable Water, 0000 UTC on 20 August 2019 (Click to enlarge)

At ~1200 UTC, when NUCAPS again passed over this region, profiles could again be used to discern gradients in total precipitable water.  At that time, however, the Split Window Difference field was not computed because warming of the Advanced Baseline Imager (ABI) associated with the sub-optimal performance of the Loop Heat Pipe meant that Band 15 data were not available.  (Baseline Level 2 Products, such as total precipitable water, are also unavailable from GOES-17 because of the Loop Heat Pipe issue) The Split Window Difference field could be computed from Himawari-8 data however.

View only this post Read Less

Pyrocumulonimbus cloud in Bolivia

GOES-16 (GOES-East) “Red” Visible (0.64 µm), Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.35 µm) images (above) showed the formation of a pyrocumulonimbus (pyroCb) cloud over far southeastern Bolivia on 18 August 2019. The small anvil cloud briefly surpassed the -40ºC pyroCb threshold from 1800-1820 UTC, attaining a minimum cloud-top infrared... Read More

GOES-16

GOES-16 “Red” Visible (0.64 µm, top), Shortwave Infrared (3.9 µm, middle) and “Clean” Infrared Window (10.35 µm, bottom) images [click to play animation | MP4]

GOES-16 (GOES-East) “Red” Visible (0.64 µm), Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.35 µm) images (above) showed the formation of a pyrocumulonimbus (pyroCb) cloud over far southeastern Bolivia on 18 August 2019. The small anvil cloud briefly surpassed the -40ºC pyroCb threshold from 1800-1820 UTC, attaining a minimum cloud-top infrared brightness temperature of -45.2ºC along the Bolivia/Paraguay border at 1800 UTC. This pyroCb formed over the hottest southern portion of an elongated fire line, as seen in the Shortwave Infrared imagery.

A 1.5-day animation of GOES-16 Shortwave Infrared images (from 12 UTC on 17 August to 2350 UTC on 18 August) revealed the rapid southeastward run of the fire to the Bolivia/Paraguay border on 17 August, followed by the eastward expansion of the fire line on 18 August (below).

GOES-16 Shortwave Infrared (3.9 µm) images [click to play animation | MP4]

GOES-16 Shortwave Infrared (3.9 µm) images [click to play animation | MP4]

A toggle between Suomi NPP VIIRS True Color Red-Green-Blue (RGB) and Infrared Window (11.45 µm) images as viewed using RealEarth (below) showed the large and dense smoke plume streaming southeastward, with the small pyroCb along the Bolivia/Paraguay border at 1745 UTC — the brighter white tops of the pyrocumulus and pyrocumulonimbus clouds reached higher altitudes than the tan-colored smoke plume. The coldest cloud-top infrared brightness temperature was about -55ºC (orange enhancement), which corresponded to an altitude around 9 km according to rawinsonde data from Corumbá, Bolivia.

Suomi NPP VIIRS True Color Red-Green-Blue (RGB) and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS True Color Red-Green-Blue (RGB) and Infrared Window (11.45 µm) images [click to enlarge]

 

Strong northerly to northwesterly surface winds were blowing across the region, in advance of an approaching cold front (surface analyses) — at Robore, Bolivia (located just north-northwest of the fires), winds were gusting to 25-28 knots during much of the day (below).

Time series of surface report data from Robore, Bolivia [click to enlarge]

Time series of surface report data from Robore, Bolivia [click to enlarge]

This is likely the second confirmed case of a South American pyroCb (the first being on 29 January 2018) — in addition, it’s the second pyroCb documented in the tropics and the first pyroCb documented during a winter season. Thanks to Mike Fromm (NRL) for bringing this case to our attention!

===== 25 August Update =====

GOES-16 “Red” Visible (0.64 µm, top), Shortwave Infrared (3.9 µm, middle) and “Clean” Infrared Window (10.35 µm, bottom) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm, top), Shortwave Infrared (3.9 µm, middle) and “Clean” Infrared Window (10.35 µm, bottom) images [click to play animation | MP4]

GOES-16 Visible, Shortwave Infrared and “Clean” Infrared Window images (above) showed that another pyroCb developed from that same general fire complex, southwest of Robore, Bolivia (SLRB), on 25 August.

A toggle between Suomi NPP and NOAA-20 VIIRS True Color RGB and Infrared Window images as viewed using RealEarth (below) showed the large and dense smoke plume streaming southeastward, with the small pyroCb just north of the Bolivia/Paraguay border — the brighter white tops of the pyrocumulus and pyrocumulonimbus clouds reached higher altitudes than the tan-colored smoke-rich clouds at lower altitudes.

Suomi NPP and NOAA-20 VIIRS True Color RGB and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP and NOAA-20 VIIRS True Color RGB and Infrared Window (11.45 µm) images [click to enlarge]

View only this post Read Less