GOES-R Band 2 (“red visible”) Calibration Changes

May 1st, 2019 |

GOES-16 ABI Band 2 Visible Imagery (0.64 µm) at 1811 UTC on 21 April (before the calibration change) and at 1811 UTC on 25 April 2019 (after the calibration change) in and around Pima County (outlined in black) in southern Arizona (click to enlarge).

On 23 April 2019, a Ground Systems update resulted in a change to the ‘brightness’ (in the form of dimming) of the GOES-16 Band 2 (0.64 µm) visible imagery (as noted in this calibration events log).  The  calibration coefficients used for this band were determined in the lab before the launch. (Other calibration information is collected on-orbit.) GOES-R Advanced Baseline Imager (ABI) visible imagery have been compared to visible imagery from polar-orbiting satellites in the past several years (see this page), and GOES-R ABI Band 2 (0.64 µm) radiances were consistently larger than measurements from Suomi NPP and NOAA-20 using the Visible-Infrared Imaging Radiometer Suite (VIIRS).

ABI calibration coefficients for GOES-16 were modified on 23 April, using plausible values from pre-launch lab measurements. Thus, Band 2 radiances decreased by about 6.9%. This will have an impact on the computed albedo as shown above: the later date (after the calibation change) is slightly darker than the earlier (before the calibration change). This change means that Band 2 radiances and albedo are more closely aligned with values from other satellites. A similar toggle over Texas is shown below.

Note: A similar change for GOES-17 was implemented at 1540 UTC on 27 April 2019.

GOES-16 ABI Band 2 Visible Imagery (0.64 µm) at 1811 UTC on 21 April (before the calibration change) and at 1811 UTC on 25 April 2019 (after the calibration change) in and around Fayette County, TX (outlined in black), just west of metropolitan Houston (click to enlarge).

GOES-17 Loop Heat Pipe Effects on 14 April 2019

April 15th, 2019 |

16-Panel GOES-17 Full-Disk Advanced Baseline Imager (ABI) Imagery, 0010 – 2340 UTC on 14 April 2019 (Click to play mp4 animation)

Solar illumination of the GOES-17 Advanced Baseline Imagery (ABI) was at a maximum on 14 April, so that the effects of the Loop Heat Pipe that is not operating at its designed capacity (and therefore cannot keep the ABI detectors as cold as preferred) were at their worst. (This image of the predicted Focal Plane Temperature from this blog post shows the mid-April peak to be warmest). The animation above shows that only Band 14 (11.2 µm) was able to send a useable signal during the entire night. The Band 14 data are biased, however. The image below compares GOES-16 and GOES-17 temperatures over a region on the Equator (here, from the GOES-17 perspective, and here, from the GOES-16 perspective, from this website) equidistant between the two sub-satellite points (75.2º W for GOES-East, 137.2º W for GOES-West).  GOES-17 slowly cools relative to GOES-16 (assumed to be ‘truth’) before undergoing a series of cold/warm/cold oscillations relative to GOES-16.   So while a useful signal is preserved, algorithms that rely on threshold temperatures, or brightness temperature difference fields (such as the 3.9 µm – 11.2 µm Brightness Temperature Difference), would likely produce unexpected results.

ABI Band 14 (11.2 µm) temperature differences, GOES-17 – GOES-16 on 14 April 2019 (Click to enlarge). Representative Band 14 images during a time largely unaffected by Loop Heat Pipe issues are shown at top.

 

Loop Heat Pipe issues should slowly subside over the coming weeks.  ‘Predictive Calibration’ is likely to be in place by the time the (Northern Hemisphere) Autumnal Equinox arrives.  This will extend the useful signal for the ABI channels.  One might even conclude that this current episode will have the worst impact on useable imagery from the ABI.

Signatures of the Alaska Range in GOES-17 Water Vapor imagery

February 28th, 2019 |

GOES-17 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images, with topography [click to play animation | MP4]

GOES-17 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images, with topography [click to play animation | MP4]

GOES-17 (GOES-West) Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images (above) displayed subtle thermal signatures of some of the highest-elevation western and central portions of the Alaska Range on 28 February 2019.

Plots of GOES-17 Water Vapor weighting functions, calculated using 12 UTC rawinsonde data from Anchorage, are shown below. Even with a very large satellite viewing angle (or zenith angle) of 70.1 degrees — which would tend to shift the Water Vapor weighting functions to higher altitudes —  the presence of dry air within the entire mid-upper troposphere brought the weighting function peaks downward to pressure levels corresponding to those of the higher elevations of the Alaska Range.

GOES-17 Water Vapor weighting functions, calculated using 12 UTC rawinsonde data from Anchorage [click to enlarge]

GOES-17 Water Vapor weighting functions, calculated using 12 UTC rawinsonde data from Anchorage [click to enlarge]

The dry air aloft helped to provide a remarkably cloud-free day over much of south-central Alaska, as seen in GOES-17 “Red” Visible (0.64 µm) images (below). In addition, an example of the transient spikes in daytime solar reflectance seen during this time of year was evident in the Visible imagery — note the brief brightening of a few of the images centered at 2115 UTC. Additional details about this effect are available here.

GOES-17 "Red" Visible (0.64 µm) images [click to play animation | MP4]

GOES-17 “Red” Visible (0.64 µm) images [click to play animation | MP4]

Just for fun, a closer look at the GOES-17 Visible imagery (below) revealed the tidal ebb and flow of drift ice within Cook Inlet and Turnagain Arm in the Anchorage area — and a similar diurnal flow of ice was also seen on the following day (animated GIF | MP4).

GOES-17 "Red" Visible (0.64 µm) images [click to play animation | MP4]

GOES-17 “Red” Visible (0.64 µm) images [click to play animation | MP4]

===== 01 March Update =====

GOES-17 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images, with topography [click to play animation | MP4]

GOES-17 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images, with topography [click to play animation | MP4]

With a similar scenario to the previous day (but farther to the east), dry air aloft allowed thermal signatures of the highest summits of the eastern Alaska Range and the Wrangell Mountains to be apparent in GOES-17 Water Vapor imagery — even the Upper-level 6.2 µm band (above).

However, in this case the Water Vapor weighting functions derived using rawinsonde data from nearby Anchorage were not representative of the pocket of dry air farther east over the mountains. An increase in the moisture profile — especially within the mid/upper troposphere — shifted the weighting functions to higher altitudes, due absorption and re-emission by that higher-altitude (and colder) moisture. Note how the weighting function contributions centered around the 300 hPa pressure level increased during the 24 hours from 12 UTC on 28 February to 12 UTC on 01 March, while the relative contributions decreased within the 500-700 layer (below).

GOES-17 Water Vapor weighting functions, calculated using rawinsonde data from Anchorage on 28 February (12 UTC) and 01 March (00 and 12 UTC) [click to enllarge]

GOES-17 Water Vapor weighting functions, calculated using rawinsonde data from Anchorage on 28 February (12 UTC) and 01 March (00 and 12 UTC) [click to enllarge]

An overpass of the Suomi NPP satellite provided a number of NUCAPS sounding profiles across this region (below).

GOES-17 Upper-level Water Vapor (6.2 µm) image at 2045 UTC, with NUCAPS sounding points at 2049 UTC plotted in green [click to enlarge]

GOES-17 Upper-level Water Vapor (6.2 µm) image at 2045 UTC, with NUCAPS sounding points plotted in green [click to enlarge]

A comparison of a dry NUCAPS sounding over the mountains (Point D) with a moist sounding near Anchorage (Point M) is shown below. As shown here, the moisture profile of the NUCAPS Point M sounding was similar to that of the 12 UTC Anchorage sounding.

Comparison of a dry NUCAPS sounding over the mountains (Point D) with a moist sounding near Anchorage (Point M) [click to enlarge]

Comparison of a dry NUCAPS sounding over the mountains (Point D) with a moist NUCAPS sounding near Anchorage (Point M) [click to enlarge]

GOES-17 Data Fusion: An example, and where to find the data

February 15th, 2019 |

GOES-17 Water Vapor Imagery. 6.19 µm (top row), 6.95 µm (middle row), 7.34 µm (bottom row); Left Columm:  Imagery from the ABI; Right Column:  Data Fusion Imagery created using the GOES-17 ABI Band 13 (10.3 µm) Imagery. Animation from 0902 UTC – 1727 UTC. Data Fusion imagery is not computed for the first or last images. Click to play mp4 animation.

The GOES-17 Loop Heat Pipe issue means that certain infrared bands lose data integrity at certain times, times that vary over the course of the year. Late February is a time of year when the impacts on data are very noticeable (This figure — from this blog post — shows other times of the year when the issue is most noticeable).  The Data Fusion process that uses GOES-17 ABI Band 13 imagery (relatively unaffected by the LHP issues) can create approximations of the missing imagery.  This allows for qualitative views of those missing bands.

The animation above (click here for an animated gif) shows GOES-17 Water Vapor Channels on the left (6.19 µm, 6.95 µm and 7.34 µm) and GOES-17 Data Fusion images on the right. At the beginning of the animation (0902 UTC), Data Fusion is not implemented; it uses information at 0902 to create subsequent imagery, however. In the first few frames of the animation, the impact of the LHP warming are not apparent. By 1007 UTC, however, the GOES-17 Water Vapor Bands are becoming noticeably warmer than the Data Fusion imagery. (An initial signal that LHP issues are starting is a general warming in the imagery). Data dropouts start at 1102 UTC, first at 7.34 µm, then at 6.95 µm and finally at 6.19 µm. By 1202 UTC, data integrity is lost completely, but Data Fusion maintains a signal that allows a user to qualitatively track features in the image. Shortly after 1500 UTC, data starts to reappear, initially mostly at 6.19 µm, then 6.95 µm and finally at 7.34 µm. By 1632 UTC, the PACUS (Pacific/CONUS) image shows data, but it is cooler than the Fused data (Note the cooler cloud top temperatures in all three water vapor bands).

Warmth going into LHP Data Drop-outs and coolness coming out of LHP Data Drop-outs have been documented in this directory tree that compares GOES17 and GOES16 imagery in a region in between the two satellites (a region with similar view angles). The figure below (from here, accessible from this website) shows that GOES-17 brightness temperatures (in red) are warmer than GOES-16 (in blue) before data loss, and cooler than GOES-16 immediately subsequent to data loss.

GOES-17 (red) and GOES-16 (blue) brightness temperatures for an small domain midway between the two sub-satellite points. The GOES-17 6.19 Image at 1552 UTC is also shown (Click to enlarge).

Fusion Data (in the form of netCDF files written comforming to mission standards; the netCDF files are readable by SIFT and McIDAS-V, for example) are available via ADDE from the SSEC Data Center. Send an email here for more information. Imagery is also available at the SSEC Data Center via the geo browser.