Record rainfall and flooding in Arizona
McIDAS images of 4-km resolution GOES-15 10.7 µm IR channel data (above; click image to play animation; also available as an MP4 movie file) showed the merger of two large mesoscale convective systems (MCS) which produced an all-time record maximum calendar day precipitation amount of 3.29 inches at Phoenix Sky Harbor Airport (PHX) on 08 September 2014. Some locations in the Phoenix area received in excess of 5 inches of rainfall (NWS Phoenix event summary).
An AWIPS-II image of 375-meter resolution Suomi NPP VIIRS 11.45 µm IR channel data (below) showed the MCS pair at 09:07 UTC or 3:07 AM local time — this was prior to the merger, and the southeastern storm exhibited a minimum cloud-top IR brightness temperature of -84º C (purple color enhancement), which was much colder than the -71º C seen with the northwestern storm. At the onset of the heavy thunderstorms at PHX, southerly to southeasterly winds — likely outflow from the southeastern MCS — gusted as high as 31 knots (36 mph) and visibility was reduced to 0.8 mile (surface reports: text | graph).
As the circulation of former-Hurricane Norbert continued to spin over the Pacific Ocean west of Baja California, deep tropical moisture kept working its way farther inland — GOES sounder Total Precipitable Water (TPW) values in excess of 50-60 mm (2.0 to 2.4 inches) were eventually seen across the southwestern half of Arizona (below; click image to play animation).
The Blended Total Precipitable Water product (below; click image to play animation) also showed values of 50-60 mm working their way into southwestern Arizona during the 06-08 September period.
The Percent of Normal TPW product (below; click image to play animation) indicated that these TPW values were in excess of 200% of normal (yellow color enhancement) over large portions of the Desert Southwest. On the morning of 08 September, the TPW value of 2.03 inches derived from rawinsonde data at Tucson, Arizona set a record high for the month of September at that location.