Severe thunderstorms across Oklahoma, Kansas and Missouri

May 22nd, 2019 |

GOES-16 “Red” Visible (0.64 µm) images, with SPC Storm Reports plotted in red [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images, with SPC Storm Reports plotted in red [click to play animation | MP4]

1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) showed the development of supercell thunderstorms that produced tornadoes, large hail and damaging winds (SPC Storm Reports) across parts of Oklahoma, Kansas and Missouri on 22 May 2019.

GOES-16 “Clean” Infrared Window (10.35 µm) images (below) showed the storms as they persisted into the nighttime hours — including storms that produced EF3-rated tornadoes that affected Golden City, Missouri around 0211 UTC (which was responsible for 3 fatalities) and Jefferson City, Missouri around 0440 UTC.

GOES-16 “Clean” Infrared Window (10.35 µm) images, with SPC Storm Reports plotted in cyan [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images, with SPC Storm Reports plotted in cyan [click to play animation | MP4]

A Terra MODIS Infrared Window (11.0 µm) image about 30 minutes before the Jefferson City tornado (below) displayed a well defined Enhanced-V storm top signature.

Terra MODIS Infrared Window (11.0 µm) image. with plot of SPC storm reports [click to enlarge]

Terra MODIS Infrared Window (11.0 µm) image, with plot of SPC storm reports [click to enlarge]

A closer look at 1-minute GOES-16 Infrared images for the storm producing the EF-3 tornado that affected Jefferson City (KJEF) is shown below — of note are the 2 pre-tornado updraft pulses west/southwest of KJEF at 0346 UTC and 0359 UTC, when cloud-top infrared brightness temperatures briefly cooled to -81ºC and -82ºC, respectively (violet pixels). The NWS St. Louis storm survey indicated that the tornado which eventually moved through Jefferson City began southwest of the city at 0420 UTC.

GOES-16 “Clean” Infrared Window (10.35 µm) images, with SPC Storm Reports plotted in cyan [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.35 µm) images, with SPC Storm Reports plotted in cyan [click to play animation | MP4]

A sequence of 3 VIIRS Infrared Window (11.45 µm) images (below) from Suomi NPP (at 0704 and 0844 UTC) and NOAA-20 (at 0754 UTC) showed the line of supercell thunderstorms.

VIIIRS Infrared Window (11.45 µm) images from Suomi NPP (0704 and 0844 UTC) and NOAA-20 (0754 UTC) [click to enlarge]

VIIRS Infrared Window (11.45 µm) images from Suomi NPP (0704 and 0844 UTC) and NOAA-20 (0754 UTC) [click to enlarge]

A closer view of the Suomi NPP VIIRS Infrared Window (11.45 µm) image at 0704 UTC (below) revealed another well defined Enhanced-V signature in far northeastern Oklahoma.

Suomi NPP VIIRS Infrared Window (11.45 µm) image at 0704 UTC [click to enlarge]

Suomi NPP VIIRS Infrared Window (11.45 µm) image at 0704 UTC [click to enlarge]

The Suomi NPP VIIRS Infrared Window (11.45 µm) image at 0844 UTC (below) depicted an example of a warm “moat” surrounding a cold overshooting top having a minimum infrared brightness temperature of -81ºC (violet enhancement) east of Patoka, Illinois.

Suomi NPP VIIRS Infrared Window (11.45 µm) image at 0844 UTC [click to enlarge]

Suomi NPP VIIRS Infrared Window (11.45 µm) image at 0844 UTC [click to enlarge]

Severe thunderstorms in Texas and Oklahoma

May 20th, 2019 |

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with SPC Storm Reports plotted in red [click to play MP4 animation]

1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) showed the development of widespread thunderstorms that produced tornadoes, large hail (up to 5.5 inches in diameter in Texas) and damaging winds (as high as 94 mph in Oklahoma) (SPC storm reports) across parts of Texas and Oklahoma on 20 May 2019.

The corresponding GOES-16 “Clean” Infrared Window (10.35 µm) images (below) indicated that cloud-top infrared brightness temperatures were frequently as cold as -70 to -80ºC (black to white to violet enhancement) with the more vigorous thunderstorms.

GOES-16 "Clean" Infrared Window (10.35 µm) images, with SPC Storm Reports plotted in cyan [click to play MP4 animation]

GOES-16 “Clean” Infrared Window (10.35 µm) images, with SPC Storm Reports plotted in cyan [click to play MP4 animation]

GOES-16 "Red" Visible (0.64 µm) images, with SPC Storm Reports plotted in red [click to play MP4 animation]

GOES-16 “Red” Visible (0.64 µm) images, with SPC Storm Reports plotted in red [click to play MP4 animation]

Zoomed-in versions of the Visible images (above) and Infrared images (below) are centered at Childress, Texas — which provide a better view of the storms which produced the 5.5-inch hail (Visible | Infrared) at Wellington, Texas and the large tornado near Magnum, Oklahoma (Visible | Infrared | YouTube video).

GOES-16 "Clean" Infrared Window (10.35 µm) images, with SPC Storm Reports plotted in cyan [click to play MP4 animation]

GOES-16 “Clean” Infrared Window (10.35 µm) images, with SPC Storm Reports plotted in cyan [click to play MP4 animation]

One interesting aspect of this line of deep convection: it was effectively acting as an obstacle to the upstream southwesterly flow, resulting in the formation of a quasi-stationary band of gravity waves along its western edge — these waves were very evident in GOES-16 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images (below).

GOES-16 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images [click to play MP4 animation]

GOES-16 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images [click to play MP4 animation]

GOES-16 Split Window Difference (10.3-12.3 µm) images (below) displayed the yellow signature of blowing dust in the vicinity of a cold front that was moving eastward across southeastern New Mexico and southwestern Texas. Blowing dust restricted surface visibility to 3 miles or less at El Paso in Texas and at Alamagordo and Artesia in New Mexico.

GOES-16 Split Window Difference (10.3-12.3 µm) images [click to play animation | MP4]

GOES-16 Split Window Difference (10.3-12.3 µm) images [click to play animation | MP4]

During the subsequent overnight hours, these thunderstorms produced heavy rainfall from northern Oklahoma into southern Kansas, causing flash flooding — and flooding from rising rivers across that region on the following day were captured by the Suomi NPP VIIRS Flood Detection Product (below).

Suomi NPP VIIRS True Color and False Color RGB images, along with the Flood Detection Product [click to enlarge]

Suomi NPP VIIRS True Color and False Color RGB images, along with the Flood Detection Product [click to enlarge]

The river flooding in northern/northwestern Oklahoma was also evident in a before/after comparison of Terra MODIS False Color RGB images from 15 May and 21 May (below). Water appears as darker shades of blue in the False Color images.

Terra MODIS False Color RGB images over northern Oklahoma on 15 May and 21 May [click to enlarge]

Terra MODIS False Color RGB images over northern Oklahoma on 15 May and 21 May [click to enlarge]

Severe thunderstorms in North Carolina

May 13th, 2019 |

GOES-16

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.3 µm) images, with plots of SPC storm reports [click to play animation | MP4]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.3 µm) images (above) showed clusters of severe thunderstorms that produced tornadoes and large hail (SPC storm reports) across parts of central and eastern North Carolina on 13 May 2019.

A west-to-east oriented quasi-stationary frontal boundary was acting as a focusing mechanism for many of these thunderstorms — the Terra MODIS Total Precipitable Water product at 1525 UTC (below) showed TPW values around 28 mm or 1.1 inch (lighter green enhancement) pooled immediately south of this frontal boundary.

Terra MODIS Total Precipitable Water product [click to enlarge]

Terra MODIS Total Precipitable Water product [click to enlarge]

Asian dust entrained into a midlatitude cyclone

May 12th, 2019 |

True Color RGB images from MODIS (Terra) and VIIRS (NOAA-20 and Suomi NPP) [click to enlarge]

True Color RGB images from MODIS (Terra) and VIIRS (NOAA-20 and Suomi NPP) [click to enlarge]

True Color Red-Green-Blue (RGB) images from the MODIS instrument (on the Terra satellite) and the VIIRS instrument (on the NOAA-20 and Suomii NPP satellites) as viewed using RealEarth (above) revealed a tan-colored swirl of dust that had been lofted from the surface and entrained into the circulation of a midlatitude cyclone along the Mongolia/China border on 12 May 2019.

A sequence of MODIS/VIIRS True Color RGB images from Terra and Suomi NPP on 10, 11 and 12 May (below) showed the initial signature of surface-based blowing dust appearing in the Kumul and Jiuquan areas of northwestern China on 11 May, before it became wrapped into the circulation of the aforementioned midlatitude cyclone on 12 May.

True Color RGB images from MODIS (Terra) and VIIRS (Suomi NPP) [click to enlarge]

True Color RGB images from MODIS (Terra) and VIIRS (Suomi NPP) [click to enlarge]

Surface analyses at 3-hour intervals (source), from 12 UTC on 11 May to 00 UTC on 13 May (below) illustrated the strong pressure gradient between a large dome of high pressure over Mongolia and a developing midlatitude cyclone along the Mongolia/China border on 11 May — strong surface winds generated by this pressure gradient initially caused the blowing dust to begin in northwestern China.

Surface analyses at 3-hour intervals from 12 UTC on 11 May to 00 UTC on 13 May [click to enlarge]

Surface analyses at 3-hour intervals from 12 UTC on 11 May to 00 UTC on 13 May [click to enlarge]

JMA Himawari-8 Split Window Difference (10.4-12.3 µm) images (below) showed the signature of dust (yellow to cyan enhancement) moving eastward from the desert source region in northwestern China and becoming wrapped into the circulation of the midlatitude cyclone along the Mongolia/China border.

Himawari-8 Split Window Difference (10.4-12.3 µm) iimages [click to play animation |MP4]

Himawari-8 Split Window Difference (10.4-12.3 µm) images [click to play animation | MP4]