GOES-17 ABI Temperature Data Quality Flags (TDQF) thresholds update

August 8th, 2019 |

Top: Thumbnails of GOES-17 and GOES-16 ABI Band 12 (9.6 µm) on August 1, 2019. Bottom: Time series of GOES-17 minus GOES-16 brightness temperature for a region located between the two satellites. Also plotted is the GOES-17 Focal Plane Temperature. The reduced duration of the GOES-17 data to be flagged is highlighted. [click to enlarge]

As of 19:45 UTC on August 8, 2019, the new Look-Up-Table (LUT) went into operations for use in the GOES-17 ABI Temperature Data Quality Flags (TDQF). These hotter thresholds are possible due to the recent implementation of the Predictive Calibration algorithm.  Note that the image also includes the percent good (and conditionally usable) values (flagged 0 or 1) for both GOES-16 and GOES-17 ABI. Recall there are 5 Data Quality Flags for ABI data:

  • DQF:percent_good_pixel_qf = 1.f ;
  • DQF:percent_conditionally_usable_pixel_qf = 0.f ;
  • DQF:percent_out_of_range_pixel_qf = 0.f ;
  • DQF:percent_no_value_pixel_qf = 0.f ;
  • DQF:percent_focal_plane_temperature_threshold_exceeded_qf = 0.f

The last one, DQF:percent_focal_plane_temperature_threshold_exceeded_qf, reports what percentage of the images pixels are warmer than the threshold value. Note that the thresholds on both the increasing and decreasing temperatures are also reported in the meta-data.

Near realtime brightness temperature comparisons between GOES-16 and GOES-17, as well as historical comparisons for a region centered on the equator and half way between the two satellites.

From the NOAA Notification:

Product(s) or Data Impacted: GOES-17 ABI auxiliary field change

Date/Time of Initial Impact: August 8, 2019 1945 UTC

Details/Specifics of Change:

The GOES-17 ABI Temperature Data Quality Flags (TDQF) thresholds for the thermal bands have been updated to the values in the table below.  This update will make utilizing the TDQF more effective for flagging saturated data caused by the GOES-17 ABI cooling system anomaly. There will be no impacts to distribution caused by this update.

Table of updated Temperature Quality Data Flag thresholds [click to enlarge]

Table of updated Temperature Quality Data Flag thresholds [click to enlarge]

Predictive Calibration is now operational for GOES-17

July 25th, 2019 |

Mean GOES17 – GOES16 Brightness Temperature Difference for a 401×1001 pixel footprint centered on the Equator halfway between the GOES-West and GOES-East subsatellite points. On 25 July (Red line), before Predictive Calibration was implemented, GOES-17 showed a warm bias as the Focal Plane Temperature (shown in black) increased, and a cold bias as Focal Plane Temperature decreased. On 26 July (green line), after predictive calibration was implemented, the large positive and negative biases are gone. (Click figure to enlarge)

Solar heating of the ABI instruments (on both GOES-16 and GOES-17) occurs at night around the Equinoxes. As the ABI points down to the Earth to observe the atmosphere and surface, sunlight falls on the ABI, warming it, and the Loop Heat Pipe that is not operating at capacity on GOES-17 does not circulate enough heat to radiators for dissipation to space. So, the temperature of the ABI increases during part of the night, reaches a maximum, and then decreases (as the solar illumination of the ABI decreases).

The change in temperature means that calibration looks at the Internal Calibration Target (ICT) within the ABI that occur regularly will quickly become invalid because of the changing temperature of the ABI. The images below show the temperature of the Focal Plane within the GOES-17 ABI in mid-June, in mid-July and in late July. For the best calibration, the focal plane temperatures would be steady. They are not. Note that the y-axis values are different in the plots. More significant warming is present in the latest plot and those peak values will steadily increase until Eclipse Season starts in late August. This blog post shows the effects of the warming in mid-April of this year. Predictive Calibration accounts for the change in the temperatures in between calibration looks and was implemented in the GOES-17 Ground Station at 1721 UTC on 25 July 2019. The beneficial effects of Predictive Calibration are shown in the figure (courtesy Mat Gunshor, CIMSS) above for ABI band 12; large warm and cold biases have been mitigated. ABI band 8 (6.2 µm) shows similar improvements.

Focal Plane Temperature as measured on the ABI on 19/20 June 2019, times as indicated. Note the baseline value near 81 K for both mid-wave infrared (MWIR, 3.9 µm – 8.4 µm) in red brown and long-wave IR (LWIR 9.6 µm to 13.2 µm) in green that increases to around 82 K around 1300 UTC

Focal Plane Temperature as measured on the ABI on 13/14 June 2019, times as indicated. Note the baseline value near 81 K for both mid-wave infrared (MWIR, 3.9 µm – 8.4 µm) in red brown and long-wave IR (LWIR 9.6 µm to 13.2 µm) in green that increases to around 84.5 K around 1300 UTC

Focal Plane Temperature as measured on the ABI on 24/25 July 2019, times as indicated. Note the baseline value near 81 K for both mid-wave infrared (MWIR, 3.9 µm – 8.4 µm) in red brown and long-wave IR (LWIR 9.6 µm to 13.2 µm) in green that increases to around 88 K around 1300 UTC

Warmest Predicted Focal Plane Temperature as a function of month. Also included: the threshold temperatures for each ABI band when the ABI output is noticeably affected by the warmer focal plane. The step in values near both Equinoxes occurs when a Yaw Flip is performed on the satellite (Click to enlarge)

The image above, (reproduced from this blog post and originally from here) shows the predicted focal plane maximum each day over the course of the year. It also shows at which temperature each band will marginally saturate, meaning that the effects of the warming ABI start to become noticeable.

The animation below shows the GOES-17 ABI Band 12 ‘Ozone Band’ (at 9.6 µm) that, according to the figure above is one of the first (along with Bands 10 — 7.34 µm — and 16 — 13.3 µm) to show the effects of the warming focal plane. Brightness temperatures warm before 1300 UTC and cool after 1300 UTC, and the amount of noise/stripeyness in the imagery increases  (This is most apparent at the northern edge of these 5-minute PACUS images).  These are all manifestations of the warming and cooling focal plane temperatures.

GOES-17 ABI Band 12 imagery on 18 July 2019, 0826 to 1501 UTC (Click to animate)

One week later, on 25 July 2019, below, the effects of the heating because the Loop Heat Pipe and radiator are not working at capacity are even more evident. The imagery exhibits a warm bias before 1300 UTC and a cold bias after 1300 UTC and the stripeyness of the image increases. Predictive calibration will mitigate the warm and cold bias.

Comparisons between individual bands from GOES-16 and GOES-17 for Full Disk and CONUS/PACUS views (in both cases in regions between the subsatellite points to minimize the effects of view angle) are available at this link, or also through this link.

GOES-17 ABI Band 12 imagery on 25 July 2019, 0836 to 1511 UTC (Click to animate)


======== ADDED, After Predictive Calibration was turned on ============
The animation below shows GOES-17 ABI Band 12 for the same time period as above, 0836-1511 UTC, but for the day after Predictive Calibration was implemented. You no longer see changes in observed brightness temperature that result from the warming focal plane temperatures. There is still some striping; this is associated with detector saturation and that striping will become more obvious in the next week and will lead to missing data. Predictive Calibration will not mitigate the issue of missing or striped data due to saturated sensors. Predictive Calibration is designed to mitigate warm biases before saturation, and cold biases after saturation.

GOES-17 ABI Band 12 imagery on 26 July 2019, 0836 to 1511 UTC (Click to animate)

The animation below (click to animate) shows both 25 July (left, before Predictive Calibration) and 26 July (right, after Predictive Calibration).

GOES-17 ABI Band 12 imagery from 0836 to 1511 UTC on 25 July 2019 (left, without predictive calibration) and on 26 July 2019 (right, with predictive calibration) (Click to play large animation)

You can view a short video on this topic here.

Reflection of sunlight from the Topaz Solar Farm in southern California

June 12th, 2019 |

GOES-17

GOES-17 “Red” Visible (0.64 µm) images [click to play animation | MP4]

1-minute Mesoscale Domain Sector GOES-17 (GOES-West) “Red” Visible (0.64 µm) images (above) revealed a bright reflection of sunlight off the large arrays of solar panels at Topaz Solar Farm in southern California (Google maps) — located between Black Mountain and California Valley — on 12 June 2019. Of particular interest are the vertical “stripes” emanating from the bright reflection signature in the 0.64 µm images, extending both northward and southward from the solar farm. These image artifacts are likely related to saturated ABI detector column amplifiers, due to an excess charge induced by intense sunlight reflection off the large solar panels.

Visible images displayed using McIDAS (below) are in the native GOES-17 satellite projection — removing the re-mapping inherent in the AWIPS images shown above — so the vertical striping artifacts are correctly oriented with respect to how the ABI swaths are scanned.

GOES-17 "Red" Visible (0.64 µm) images [click to play animation | MP4]

GOES-17 “Red” Visible (0.64 µm) images [click to play animation | MP4]

In multi-panel GOES-17 images that showed all 16 ABI bands (below) this reflection signature was apparent in the other visible and in most of the other infrared channels. The reflected energy was so intense that the Shortwave Infrared (3.9 µm) images displayed infrared brightness temperatures of 138.7ºC (411.85 K), the saturation temperature of the 3.9 µm detectors. Another interesting artifact: the so-called “Dark Pixels Around Bright Objects” that appear in the Visible (0.47 µm and 0.64 µm) and Near-Infrared (0.86 µm, 1.61 µm and 2.24 µm) spectral bands.

Multi-panel images of all 16 ABI bands of GOES-17 [click to play animation | MP4]

Multi-panel images of all 16 ABI bands of GOES-17 on 12 June [click to play animation | MP4]

However, note the absence of a solar farm signature in the Cirrus (1.37 µm), Water Vapor (7.3 µm, 6.9 µm and 6.2 µm) and CO2 (13.3 µm) images — the presence of a layer of moisture within the mid-troposphere (centered near the 500 hPa pressure level) absorbed upwelling radiation from the surface, then re-emitted radiation at the colder temperature of that moisture aloft (thereby masking the bright/hot solar farm signature). Plots of Infrared and Water Vapor weighting functions (below) showed significant peaks at higher altitudes (due to the aforementioned layer of mid-tropospheric moisture) for Bands 8, 9, 10 and 16 — while the other Infrared spectral bands had their strongest weighting function peaks at the surface, with minimal contributions from higher altitudes.

Infrared and Water Vapor weighting functions calculated using rawinsonde data from Vandenberg CA at 00 T on 13 June [click to enlarge]

Infrared and Water Vapor weighting functions calculated using rawinsonde data from Vandenberg Air Force Base CA at 00 UTC on 13 June [click to enlarge]

It is interesting to examine GOES-17 imagery from 5 days earlier (below) — due to a drier air mass over the area on 07 June (with a Total Precpitable Water value of 0.57 inch, vs 0.70 inch on 12 June), a faint signature of the solar farm reflection could even be seen in the Band 4 Cirrus (1.37 µm) imagery.

Multi-panel images of all 16 ABI bands of GOES-17 [click to play animation | MP4]

Multi-panel images of all 16 ABI bands of GOES-17 on 07 June [click to play animation | MP4]

Plots of the Infrared and Water Vapor weighting functions for that earlier day (below) showed higher-altitude peaks for bands 8, 9, 10 and 16 (similar to what was seen in the 12 June case).

Infrared and Water Vapor weighting functions calculated using rawinsonde data from Vandenberg Air Force Base CA at 00 UTC on 08 June [click to enlarge]

NUCAPS Sounding Availability

May 16th, 2019 |

NUCAPS soundings from NOAA-20 at 0653 UTC on 16 May 2019, 34.4 N, 75.8 W (Click to enlarge)

The Cross-Track Infrared Sounder (CrIS) on Suomi NPP suffered an anomaly back in late March and the mid-wave portion of the detectors are not functioning as designed; the wavelengths affected include those sensitive to water vapor. Because of this data outage, NUCAPS soundings are not being produced from Suomi NPP. Suomi NPP was the sole data source for NUCAPS in National Weather Service offices over the contiguous United States.

As shown above, NUCAPS soundings are being produced by NOAA-20, which, like Suomi NPP, carries both the CrIS and the Advanced Technology Microwave Sounder (ATMS). NOAA-20 NUCAPS soundings are scheduled to replace the Suomi NPP NUCAPS soundings in National Weather Service Forecast Offices in late May 2019. NOAA-20 is in the same orbit as Suomi NPP, but offset by half an orbit; overpasses are offset by about 45 minutes, so the NUCAPS data should show up in forecast offices at about the same time of day. (Compare these Suomi NPP orbits over North America to these from NOAA-20; Orbital tracks for most polar orbiters are here.) Time latency for NOAA-20 soundings is improved over Suomi-NPP however; there will be less wait needed for the soundings.

NUCAPS soundings are also produced from Metop-A and Metop-B, satellites that carry the Infrared Atmospheric Sounding Interferometer (IASI) and the Advanced Microwave Sounding Unit (AMSU) and Microwave Humidity Sensor(MHS) instruments.

NUCAPS soundings from NOAA-20, Metop-A and Metop-B are available at this site. That site includes a map (shown here) To access the soundings, move the map to your desired location, and click on the small box in the upper left of the map (under the +/- that cause the map to zoom in and out).  After clicking the box, use a left click and mouse drag on the map to define a region where sounding points will appear. (Alternatively, click the ‘Thumbnail Viewer’ box above the map; as you mouse over the points, a sounding will appear in the window.) The points are color-coordinated based on how old the latest sounding is. Zoom in, and choose your point.  Three profiles are displayed: The initial regression profile (labeled MW+IR Regr), the microwave-only profile (labeled MW phys) and the final physical retrieval profile (labeled MW+IR phys).  The resultant sounding you see will be the latest, but 10 soundings near that point over the past several days can be accessed as well.

NUCAPS soundings from Suomi NPP are not gone for good, however.  The CrIS has redundant electronics, and ‘A’ side — that has partially failed — and a ‘B’ side that has not been tested since before launch (Suomi NPP was launched on 28 October 2011!  Here is one of its first images).  The ‘B’ side electronics can be activated, and if they work, NUCAPS algorithms would have to be recalibrated for an essentially new data source.  This would take several months.  Alternatively, NUCAPS for Suomi NPP could be reformulated to account for the missing data with the ‘A’ side electrontics, something that also would take several months.  A decision on the path to take is forthcoming.