Day 7 of the Thomas Fire in Southern California

December 10th, 2017 |

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly surface reports plotted in yellow [click to play MP4 animation]

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly surface reports plotted in yellow [click to play MP4 animation]

The Thomas fire began burning in Southern California around 6:30 PM local time on 04 December (blog post) — and on 10 December 2017, GOES-15 (GOES-West) Shortwave Infrared (3.9 µm) images (above) revealed that the fire showed little signs of diminishing during the nighttime hours, and in fact began to exhibit a trend of intensification around 05 UTC or 9 PM local time. However, toward the end of the day on 10 December, bands of  thick cirrus clouds moving over the fire region acted to dramatically attenuate the satellite-detected thermal signature of the fire complex. Although the Santa Ana winds were not as intense as they had been during the previous week, some strong wind gusts were still observed.

A sequence of 4 Shortwave Infrared images from Terra MODIS and Suomi NPP VIIRS (below) showed the westward and northwestward expansion of the fire during the 0637 to 2032 UTC period. The Thomas fire has now burned 230,000 acres, making it the fifth largest wildfire on record in California.

Terra MODIS and Suomi NPP VIIRS Shortwave Infrared images, with corresponding surface reports plotted in cyan [click to enlarge]

Terra MODIS and Suomi NPP VIIRS Shortwave Infrared images, with corresponding surface reports plotted in cyan [click to enlarge]

In a toggle between Terra MODIS true-color and false-color Red-Green-Blue (RGB) images at 1846 UTC (below; source) the true-color image revealed a broad plume of thick smoke being transported westward and northwestward from the fire source region, while the false-color image showed the areal coverage of the burn scar (which appeared as reddish-brown hues beneath the clouds) as well as locations of the larger and more intense active fires (brighter pink to white) that were burning along the northern to western perimeter of the burn scar.

Terra MODIS true-color and false-color images [click to enlarge]

Terra MODIS true-color and false-color images [click to enlarge]

A comparison of Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images at 2032 UTC or 12:32 PM  local time (below) showed a well-defined thermal signature before the thicker cirrus clouds moved overhead from the south. A small cloud cluster (located just northwest of the fire thermal signature) exhibited a minimum infrared brightness temperature of -43ºC — if this cloud feature was indeed generated by the fire complex, it meets the -40ºC criteria of a pyrocumulonimbus cloud.

Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images, with surface reports plotted in cyan [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images, with surface reports plotted in cyan [click to enlarge]

The fire was producing very thick smoke, in addition to deep pyrocumulus clouds (top photo taken around 1945 UTC or 11:45 AM local time):

 


===== 11 December Update =====

Suomi NPP VIIRS Day/Night Band (0.7 µm), Near-Infrared (1.61 and 2.25 µm), Shortwave Infrared (3.75 and 4.05 µm) and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm), Near-Infrared (1.61 and 2.25 µm), Shortwave Infrared (3.75 and 4.05 µm) and Infrared Window (11.45 µm) images [click to enlarge]

A toggle between Suomi NPP VIIRS Day/Night Band (0.7 µm), Near-Infrared (1.61 and 2.25 µm), Shortwave Infrared (3.75 and 4.05 µm) and Infrared Window (11.45 µm) images at 1035 UTC or 2:35 AM local time (above; courtesy of William Straka, CIMSS) demonstrated how different spectral bands can be used to detect nighttime fire signatures. The recently-launched JPSS-1/NOAA-20 satellite also carries a VIIRS instrument.

GOES-15 Shortwave Infrared (3.9 µm) images (below) showed that once the thicker bands of cirrus clouds moved northwestward away from the region, a more well-defined thermal signature became apparent.

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly surface reports plotted in yellow [click to play animation]

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly surface reports plotted in yellow [click to play animation]

A 7-day sequence Nighttime and Daytime composites of Suomi NPP VIIRS Shortwave Infrared (3.74 µm) images (source: RealEarth) is shown below — it illustrates the spread of the Thomas Fire from 05 December to 11 December. Hot infrared pixels are black, with saturated pixels appearing bright white.

7-day sequence Nighttime and Daytime composites of Suomi NPP VIIRS Shortwave Infrared (3.74 µm) images [click to play animation]

7-day sequence Nighttime and Daytime composites of Suomi NPP VIIRS Shortwave Infrared (3.74 µm) images [click to play animation]

Snowfall across the Deep South

December 9th, 2017 |

GOES-13 Visible (0.63 µm) images [click to play animation]

GOES-13 Visible (0.63 µm) images [click to play animation]

GOES-13 (GOES-East) Visible (0.63 µm) images (above) showed a broad swath of snow cover from Louisiana to Virginia on 09 December 2017. Some notable storm total accumulations included 6.5 inches at Kentwood, Louisiana, 7.0 inches at Bay Springs, Mississippi, 12.0 inches at Jacksonville, Alabama, 2.0 inches at Century, Florida, 18.0 inches at Mountain City, Georgia, 7.0 inches near Roan Mountain, Tennessee, and 25 inches at Mt. Mitchell State Park, North Carolina. Daily record snowfall accumulations included a Trace at New Orleans, Louisiana, 5.1 inches at Jackson, Mississippi and 1 inch at Mobile, Alabama.

A closer view of GOES-13 visible images (below) showed the band of snow cover across Louisiana, Mississippi and Alabama. Much of the the snow melted quickly, due to warm ground temperatures and a full day of sun.

GOES-13 Visible (0.63 µm) images, with station identifiers plotted in yellow [click to play animation]

GOES-13 Visible (0.63 µm) images, with hourly surface reports plotted in yellow [click to play animation]

A more detailed view of the snow cover was provided by 250-meter resolution Terra and Aqua MODIS true-color Red-Green-Blue (RGB) images from the SSEC MODIS Direct Broadcast site (below). Note that snow cover was evident all the way to the Gulf Coast at Atchafalaya Bay, Louisiana early in the day.

Terra and Aqua MODIS true-color RGB images of the central Gulf Coast region [click to enlarge]

Terra and Aqua MODIS true-color images of the central Gulf Coast region [click to enlarge]

Terra and Aqua MODIS true-color RGB images, centered over Atchafalaya Bay, Louisiana [click to enlarge]

Terra and Aqua MODIS true-color RGB images, centered over Atchafalaya Bay, Louisiana [click to enlarge]

Terra and Aqua MODIS true-color images, centered over New Orleans, Louisiana [click to enlarge]

Terra and Aqua MODIS true-color images, centered over New Orleans, Louisiana [click to enlarge]

Terra MODIS true-color image, centered over Atlanta, Georgia [click to enlarge]

Terra MODIS true-color image, centered over Atlanta, Georgia [click to enlarge]

It is interesting to note that with the aid of reflected moonlight — the Moon was in the Waning Gibbous phase, at 59% of Full — the Suomi NPP VIIRS Day/Night Band (0.7 µm) was able to detect the area of deeper snow cover across southeastern Louisiana and southern Mississippi at 0741 UTC or 1:41 AM local time; this snow cover was then seen during the following morning on GOES-13 Visible (0.63 µm) imagery at 1440 UTC or 8:40 AM local time (below). A VIIRS instrument is part of the payload on the recently-launched JPSS-1/NOAA-20 satellite.

Suomi NPP VIIRS Day/Night Band (0.7 µm) and GOES-13 Visible (0.63 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and GOES-13 Visible (0.63 µm) images [click to enlarge]

Snowfall in southern Texas

December 8th, 2017 |

GOES-13 Visible (0.63 µm, left) and Shortwave Infrared (3.9 µm, right) images, with hourly plots of surface reports [click to play animation]

GOES-13 Visible (0.63 µm, left) and Shortwave Infrared (3.9 µm, right) images, with hourly plots of surface reports [click to play animation]

The combination of lift from an upper-level trough and cold air behind the passage of a surface cold front  set the stage for accumulating snow across far southern Texas on 08 December 2017. As the clouds cleared, GOES-13 (GOES-East) Visible (0.63 µm) and Shortwave Infrared (3.9 µm) images (above) revealed a narrow swath of snow cover running northeastward from the Rio Grande River toward Corpus Christi — the highest snowfall total associated with this feature was 7.0 inches near Corpus Christi. Daily snowfall records included 0.3 inch at Brownsville and 1.0 inch at Corpus Christi.

A toggle between Terra MODIS true-color and false-color Red-Green-Blue (RGB) images from RealEarth (below) showed the southwestern portion of this band of snow cover (which appeared as darker shades of cyan in the false-color image).

Suomi NPP VIIRS true-color and false-color RGB images [click to enlarge]

Suomi NPP VIIRS true-color and false-color RGB images [click to enlarge]

Farther to the north, another southwest-to-northeast oriented band of snow cover was seen on Terra MODIS true-color and false-color RGB images (below), stretching from San Antonio to Austin to College Station. The highest snowfall total there was 5.0 inches (NWS Austin/San Antonio summary),

Terra MODIS true-color and false-color images [click to enlarge]

Terra MODIS true-color and false-color images [click to enlarge]

Wildfires in southern California

December 5th, 2017 |

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly surface plots [click to play MP4 animation]

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly surface plots [click to play MP4 animation]

GOES-15 (GOES-West) Shortwave Infrared (3.9 µm) images (above; also available as an animated GIF) showed the rapid development of wildfires driven by strong Santa Ana winds in Southern California on 05 December 2017. The fire thermal anomalies or “hot spots” are highlighted by the dark black to yellow to red pixels — the initial signature was evident on the 0230 UTC image (6:30 PM local time on 04 December). The Thomas Fire (the largest of the fires) advanced very quickly toward the southwest, nearly reaching the coast.

Nighttime image toggles between Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) data at 0904 UTC and 1044 UTC (below) revealed the large fire hot spots, along with the extensive smoke plume that was drifting over the adjacent nearshore waters of the Pacific Ocean. With ample illumination from the Moon (which was in the Waning Gibbous phase, at 95% of Full), the “visible image at night” capability of the VIIRS Day/Night Band — which will also be available from the recently-launched JPSS-1/NOAA-20 satellite — was clearly demonstrated.

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images, with plots of surface reports [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images, with plots of surface reports [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images, with plots of surface reports [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images, with plots of surface reports [click to enlarge]

A toggle between the two VIIRS Day/Night Band images (below; courtesy of William Straka, CIMSS) showed initial darkness resulting from fire-related power outages in Santa Barbara County to the north, and Ventura County to the south (in the Oxnard/Camarillo area).

Suomi NPP VIIRS Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) images [click to enlarge]

This large wind-driven fire was also very hot — the maximum brightness temperature on the VIIRS 4.05 µm Shortwave Infrared image was 434.6 K or 322.6º F, which was above the saturation threshold of the VIIRS 3.75 µm Shortwave Infrared detectors (below).

Suomi NPP VIIRS 4.05 µm and 3.75 µm Shortwave Infrared images [click to enlarge]

Suomi NPP VIIRS 4.05 µm and 3.75 µm Shortwave Infrared images [click to enlarge]

In a comparison of daytime GOES-15 Visible (0.63 µm) and Shortwave Infrared (3.9 µm) images (below), the west-southwestward transport of smoke over the Pacific Ocean was clearly seen.

GOES-15 Visible (0.63 µm, top) and Shortwave Infrared (3.9 µm, bottom) images [click to play MP4 animation]

GOES-15 Visible (0.63 µm, top) and Shortwave Infrared (3.9 µm, bottom) images [click to play MP4 animation]

A more detailed view of the thick smoke originating from the 3 fires (from north to south: the Thomas, Rye and Creek fires) was provided by a 250-meter resolution Aqua MODIS true-color Red-Green-Blue (RGB) image from the MODIS Today site (below).

Aqua MODIS true-color RGB image [click to enlarge]

Aqua MODIS true-color RGB image [click to enlarge]

Immediately downwind of the Creek Fire, smoke was reducing the surface visibility to 1 mile at Van Nuys and adversely affecting air quality (below).

Time series plot of surface reports at Van Nuys, California [click to enlarge]

Time series plot of surface reports at Van Nuys, California [click to enlarge]

===== 06 December Update =====

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.75 µm and 4.05 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.75 µm and 4.05 µm) images [click to enlarge]

The fires in Southern California continued to burn into the following night, as shown by Suomi NPP VIIRS Day/Night Band (0.7 µm) and Shortwave Infrared (3.75 µm and 4.05 µm) images (above; courtesy of William Straka, CIMSS). A large-scale view with Day/Night Band imagery revealed the extent of smoke transport westward over the Pacific Ocean.

GOES-15 Shortwave Infrared (3.9 µm) images (below) displayed the thermal signatures exhibited by the fires. Note the appearance of a new fire — the Skirball Fire — first appearing on the 1300 UTC (5:00 AM local time) image, just north of Santa Monica (KSMO). Although the Santa Ana winds were not quite as strong as the previous day, some impressive wind gusts were still reported.

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly surface plots [click to play MP4 animation]

GOES-15 Shortwave Infrared (3.9 µm) images, with hourly surface plots [click to play MP4 animation]

A toggle between 250-meter resolution Terra (1911 UTC) & Aqua (2047 UTC) MODIS true-color images from MODIS Today (below) showed significant pyrocumulus development from a flare-up along the northeast perimeter of the Thomas Fire. The cloud plume only exhibited a minimum infrared brightness temperature of +5.5º C on the corresponding Aqua MODIS Infrared Window image, far above the -40ºC threshold assigned to pyroCumulonimbus clouds.

Comparison of Terra (1911 UTC) & Aqua (2047 UTC) MODIS true-color RGB images [click to enlarge]

Comparison of Terra (1911 UTC) & Aqua (2047 UTC) MODIS true-color RGB images [click to enlarge]

===== 07 December Update =====

Suomi NPP Day Night Band Imagery, 3-7 December 2017, over southern California

RealEarth imagery of the Day Night Band over 5 days (one image each night from 3 through 7 December), above, shows the evolution of the fire complex (Imagery courtesy Russ Dengel, SSEC). Similarly, a closer view of daily composites of VIIRS Shortwave Infrared (3.74 µm) imagery (below) revealed the growth and spread of the Thomas Fire from 04-07 December.

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) image composites [click to enlarge\

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) image composites [click to enlarge]

In a toggle between Terra MODIS true-color and false-color RGB images (below), the large burn scar of the Thomas Fire (shades of red to brown) was very apparent on the false-color image.

Terra MODIS true-color and false-color images [click to enlarge]

Terra MODIS true-color and false-color images [click to enlarge]