Atmospheric river events bring heavy precipitation to California

January 13th, 2017

MIMIC Total Precipatable Water product [click to play MP4 animation]

MIMIC Total Precipatable Water product [click to play MP4 animation]

A series of 3 atmospheric river events brought heavy rainfall and heavy snowfall to much of California during the first 10 days of January 2017 (NWS San Francisco/Monterey | WeatherMatrix blog). Hourly images of the MIMIC Total Precipitable Water product (above; also available as a 33 Mbyte animated GIF) showed the second and third of these atmospheric river events during the 06 January11 January 2017 period, which were responsible for the bulk of the heavy precipitation; these 2 events appear to have drawn moisture northeastward from the Intertropical Convergence Zone (ITCZ)..

Terra MODIS Visible (0.65 µm) and Near-Infrared

Terra MODIS Visible (0.65 µm) and Near-Infrared “Snow/Ice” (2.1 µm) images [click to enlarge]

A relatively cloud-free day on 13 January provided a good view of the Sacramento Valley and San Francisco Bay regions. A comparison of Terra MODIS Visible (0.65 µm) and Near-Infrared  “Snow/Ice” (2.1 µm) images (above) showed that snow cover in the higher terrain of the Coastal Ranges and the Sierra Nevada appeared darker in the Snow/Ice band image (since snow and ice are strong absorbers of radiation at the 2.1 µm wavelength) — but water is an even stronger absorber, and therefore appeared even darker (which allowed the areas of flooding along the Sacramento River and its tributaries to be easily identified). A similar type of 1.6 µm Near-Infrared “Snow/Ice” Band imagery will be available from the ABI instrument on the GOES-R series, beginning with GOES-16.

Better detail of the flooded areas of the Sacramento River and its tributaries was seen in 250-meter resolution false-color Red/Green/Blue (RGB) imagery from the MODIS Today site — water appears as darker shades of blue, while snow appears as shades of cyan (in contrast to supercooled water droplet clouds, which appear as shades of white). In the corresponding MODIS true-color image, rivers and bays with high amounts of turbidity (tan shades) were evident; the offshore flow of sediment from a few rivers could also be seen.

Terra MODIS true-color and false-color RGB images [click to enlarge]

Terra MODIS true-color and false-color RGB images [click to enlarge]

 

Portland, Oregon heavy snow event

January 11th, 2017

GOES-15 Infrared Window (10.7 µm) images, with hourly reports of surface weather type [click to play animation]

GOES-15 Infrared Window (10.7 µm) images, with hourly reports of surface weather type [click to play animation]

A surface low moving inland (3-hourly surface analyses) helped to produce widespread rain and snow across much of Oregon and southern Washington during the 10 January11 January 2017 period. 4-km resolution GOES-15 (GOES-West) Infrared images (above) and Water Vapor images (below) showed the development of a deformation band that helped to focus and prolong moderate to heavy snowfall over the Portland, Oregon area (accumulations | historical perspective). The GOES-15 images are centered at Portland International Airport (station identifier KPDX).

GOES-15 Water Vapor (6.5 µm) images, with hourly reports of surface weather type [click to play animation]

GOES-15 Water Vapor (6.5 µm) images, with hourly reports of surface weather type [click to play animation]

1-km resolution GOES-15 Visible (0.63 µm) images (below) during the last few hours of daylight on 10 January revealed the shadowing and textured signature of numerous embedded convective elements moving inland, which were helping to enhance precipitation rates (and even produce thundersnow at a few locations, a phenomenon which is very unusual for the Pacific Northwest).

GOES-15 Visible (0.63 µm) images, with hourly reports of surface weather type [click to play animation]

GOES-15 Visible (0.63 µm) images, with hourly reports of surface weather type [click to play animation]

===== 12 January Update =====

As clouds cleared in the wake of the storm, a comparison of 375-meter resolution Suomi NPP VIIRS true-color and false-color Red/Green/Blue (RGB) images viewed using RealEarth (below) revealed the extent of the snow cover; snow appears as shades of cyan in the false-color image, in contrast to clouds which appear as shades of white. [Note: with 5 inches of snow remaining on the ground, a new record low temperature was set in Portland on 13 January]

Suomi NPP VIIRS true-color and false-color RGB images [click to enlarge]

Suomi NPP VIIRS true-color and false-color RGB images [click to enlarge]

The fresh snowfall was also apparent in a 30-meter resolution Landsat-8 false-color RGB image (below) along the south face of Mount Hood (located about 98 miles or 158 km east of Portland). The ski slopes of Timberline Lodge and  Mount Hood Meadows received 13-14 inches of new snow during this event; the snow base depth at Timberline was greater than the average amount for this time of year.

Landsat-8 false-color RGB image [click to play zoom-in animation]

Landsat-8 false-color RGB image [click to play zoom-in animation]

Oil well fire in Utah

January 6th, 2017

GOES-15 Visible (0.63 µm) images, with hourly surface reports [click to play animation]

GOES-15 Visible (0.63 µm) images, with hourly surface reports [click to play animation]

GOES-15 (GOES-West) Visible (0.63 µm) images (above) showed a small, short-lived black cloud that formed south/southwest of Vernal (station identifier KVEL) in northeastern Utah on 06 January 2017. This feature was the result of a fire at an oil well site (media report | well location) that apparently started around 11:30 am local time (1830 UTC); the black cloud from the burning oil tanks — which was first apparent on the 1930 UTC visible image — stood out well against the snow-covered ground. The initial northwestward transport of the smoke plume was consistent with lower-tropospheric winds in Grand Junction, Colorado rawinsonde data at 07 January/00 UTC, which showed southeasterly winds as high as 784 hPa (2185 meters or 7169 feet above ground level). The sounding profile also showed that this height was the top of a well-defined temperature inversion, which acted as a cap to prevent the smoke from reaching higher altitudes (photo).

GOES-13 (GOES-East) Visible (0.63 µm) images (below) also displayed the dark smoke plume. The viewing angles from the 2 satellites were similar (~53 degrees from GOES-15 vs ~57 degrees from GOES-13), but the time sampling was slightly better from GOES-15 (due to the extra “SUB-CONUS” scan images at :11 and :41 minutes nearly every hour). Image frequency will be even better with the GOES-R series of satellites (beginning with GOES-16), with routine scans every 5 minutes; the visible image spatial resolution will also be improved (to 0.5 km, vs 1.0 km with the current GOES).

GOES-13 Visible (0.63 µm) images, with hourly surface reports [click to play animation]

GOES-13 Visible (0.63 µm) images, with hourly surface reports [click to play animation]

MODIS Visible (0.645 µm), Shortwave Infrared (3.7 µm) and Infrared Window (11.0 µm) images from a 2036 UTC overpass of the Aqua satellite (below) showed the black smoke cloud in the Visible, but there was no evidence of a fire “hot spot” in the Shortwave Infrared (the media report indicated that the fire was extinguished about 2 hours after it started, which would have been around or just before the time of the MODIS images). On the Infrared Window image, the smoke plume actually did exhibit a slightly colder (darker blue color enhancement) signature, which is unusual since conventional fire and wildfire smoke is normally transparent to thermal radiation.

Aqua MODIS Visible (0.645 µm) and Shortwave Infrared (3.7 µm) images at 2036 UTC [click to enlarge]

Aqua MODIS Visible (0.645 µm) and Shortwave Infrared (3.7 µm) images at 2036 UTC [click to enlarge]

A view of the 250-meter resolution Aqua MODIS true-color Red/Green/Blue (RGB) image from the MODIS Today site is shown below.

Aqua MODIS true-color image at 2036 UTC [click to enlarge]

Aqua MODIS true-color image at 2036 UTC [click to enlarge]

Eruption of Alaska’s Bogoslof volcano

December 22nd, 2016

Himawari-8 0.64 µm (left) and GOES-15 0.63 µm (right) Visible images [click to play animation]

Himawari-8 0.64 µm (left) and GOES-15 0.63 µm (right) Visible images [click to play animation]

Following a short-lived eruption on 21 December, the Bogoslof volcano in the eastern Aleutian Island chain of Alaska erupted again at about 0110 UTC on 22 December 2016. The volcanic cloud could be seen moving north/northeastward away from Bogoslof (denoted by the yellow * symbol) on Himawari-8 and GOES-15 Visible images (above). The higher spatial and temporal resolution from Himawari-8 (0.5 km at nadir, with images every 10 minutes) provided a more detailed view of the cloud feature compared to GOES-15 (with 1.0 km resolution at nadir, and images every 15 minutes); however, the ABI instrument on the GOES-R series will have an identical 0.5 km resolution Visible band. Another Himawari-8 Visible image animation is available from RAMMB.

Multispectral Red/Green/Blue (RGB) images from the NOAA/CIMSS Volcanic Cloud Monitoring site (below) displayed a signal of the volcanic cloud during the ~2.5 hours following the onset of the eruption — since this particular RGB combination uses the 3.9 µm Shortwave Infrared band, the volcanic cloud feature appeared as darker shades of magenta during the first few images while reflected solar illumination was present before sunset.

Himawari-8 false-color RGB images [click to play animation]

Himawari-8 false-color RGB images [click to play animation]

Another variant of RGB images (below) uses the 8.5 µm “cloud top phase” band, which is also sensitive to SO2 absorption; in this case, the appearance of the volcanic cloud feature was dominated by shades of yellow, indicating high levels of SO2.

Himawari-8 false-color RGB images [click to play animation]

Himawari-8 false-color RGB images [click to play animation]

A comparison of the 3 Himawari-8 water vapor bands (below) showed that a strong signature of the volcanic cloud was seen on the lower-tropospheric 7.3 µm band; this was due to the fact that the 7.3 µm band is also sensitive to elevated levels of SO2 loading in the atmosphere (which was also noted at the bottom of this Mount Pavlof eruption blog post). These same 3 water vapor bands (Upper-level, Mid-level and Lower-level) will be available from the GOES-R series ABI instrument.

Himawari-8 6.2 µm (top), 6.9 µm (middle) and 7.3 µm (bottom) Water Vapor images [click to play animation]

Himawari-8 6.2 µm (top), 6.9 µm (middle) and 7.3 µm (bottom) Water Vapor images [click to play animation]

A closer view using Himawari-8 false-color images (below) includes a magenta polygon surrounding the volcanic cloud soon after the onset of the eruption — this is an example of an experimental automated volcanic eruption alerting system. According to Michael Pavolonis (NOAA/NESDIS), “Using our automated cloud object tracking algorithm, the eruption produced a cloud at 01:30 UTC that was about 19 deg C colder than the background imaged by Himawari-8 at 01:20 UTC.  Taking into account the pixel size, background cloud cover, and time interval between successive images, the 19 deg C change is about an 11 standard deviation outlier relative to a very large database of meteorological clouds.  The vertical growth anomaly calculation is the basis of one the components of our experimental automated volcanic eruption alerting system”.

Himawari-8 false-color images, with a polygon surrounding the volcanic cloud [click to enlarge]

Himawari-8 false-color images, with a polygon surrounding the volcanic cloud [click to enlarge]

The creation of RGB images such as those shown above will be possible from the GOES-R series of satellites (beginning with GOES-16), since the ABI instrument has the 8.4 µm and 12.3 µm bands that are not available from the current generation of GOES imager instruments.

Additional satellite images of this event are available from NWS Anchorage.