GOES-16 Mesoscale Sectors: improved monitoring of fire activity

March 19th, 2017 |

GOES-16 Shortwave Infrared (3.9 µm, left) and GOES-13 Shortwave Infrared (3.9 µm, right) images [click to play MP4 animation]

GOES-16 Shortwave Infrared (3.9 µm, left) and GOES-13 Shortwave Infrared (3.9 µm, right) images [click to play MP4 animation]

** The GOES-16 data posted on this page are preliminary, non-operational data and are undergoing testing. **

The ABI instrument on GOES-16 is able to scan 2 Mesoscale Sectors, each of which provides images at 1-minute intervals. For what was likely a prescribed burn in the Francis Marion National Forest (near the coast of South Carolina) on 19 March 2017, a comparison of 1 minute Mesoscale Sector GOES-16 and 15-30 minute Routine Scan GOES-13 Shortwave Infrared (3.9 µm) images (above; also available as a 50 Mbyte animated GIF) demonstrated the clear advantage of 1-minute imagery in terms of monitoring the short-term intensity fluctuations that are often exhibited by fire activity. In this case,  the intensity of the fire began to increase during 15:15-15:45 UTC — a time period when there was a 30-minute gap in routine scan imagery from GOES-13. The GOES-16 shortwave infrared brightness temperature then became very hot (red enhancement) beginning at 15:46:58 UTC, which again was not captured by GOES-13 — even on the 16:00 UTC and later images (however, this might be due to the more coarse 4-km spatial resolution of GOES-13, compared to the 2-km resolution of the shortwave infrared band on GOES-16). Similar short-term intensity fluctuations of a smaller fire (burning just to the southwest) were not adequately captured by GOES-13.

The corresponding GOES-16 vs GOES-13 Visible image comparison (below; also available as a 72 Mbyte animated GIF) also showed the advantage of 1-minute scans, along with the improved 0.5-km spatial resolution of the 0.64 µm spectral band on GOES-16 (which allowed brief pulses of pyrocumulus clouds to be seen developing over the fire source region).

GOES-16 Visible (0.64 µm, left) and GOES-13 Visible (0.63 µm, right) images [click to play MP4 animation]

GOES-16 Visible (0.64 µm, left) and GOES-13 Visible (0.63 µm, right) images [click to play MP4 animation]

 The rapid south-southeastward spread of the smoke plume could also be seen on true-color Red/Green/Blue (RGB) images from Terra/Aqua MODIS and Suomi NPP VIIRS, as viewed using RealEarth (below).

Terra MODIS, Aqua MODIS and Suomi NPP VIIRS true-color images [click to enlarge]

Terra MODIS, Aqua MODIS and Suomi NPP VIIRS true-color images [click to enlarge]

GOES-16 RGB Imagery in AWIPS

March 15th, 2017 |

0.64 µm, 0.86 µm and 1.61 µm imagery and the computed RGB from GOES-16. 1524 UTC on 15 March 2017 (Click to enlarge)

The GOES-16 data posted on this page are preliminary, non-operational data and are undergoing testing.

The ABI on GOES-16 contains 16 Channels, and those channels can be combined into RGB Imagery to highlight features that the individual channels can identify (Click here for general information on RGBs). For example, the ‘Icing RGB’ in AWIPS (also called the ‘Day Land Cloud’ RGB) uses 1.61 µm imagery for the Red component of the RGB, the 0.86 µm for the Green component and the 0.64 µm for the Blue. (This is similar to the oddly-named EUMETSAT ‘Natural Color’ RGB). The toggle above shows the three individual channels, and then the combination in the RGB. A version of the RGB was sent in this Tweet from NWS Lincoln IL.

Cyan regions are those with high values from the green component (0.86 µm) and the blue component (0.64 µm) but little from the red (1.61 µm); such regions include snow on the ground, and/or glaciated clouds. Consider, for example, the toggle below between the 0.86 µm and 1.61 µm imagery.  Lake Effect clouds are distinct over Lake Michigan in both channels, where they show up against the dark background.  Snow on the ground and Water Clouds look very similar at 0.86 µm (or at 0.64 µm, part of the toggle at top of this blog post) and it’s difficult to distinguish clouds from snow over land in a still image.  However, the 1.61 µm imagery is much darker in regions of snow (most of the Midwest United States had snow cover on 15 March 2017).  Water-based clouds show up distinctly against the darker background in the 1.61 µm imagery, and the Lake Effect clouds can be seen easily over Indiana and Michigan. There is apparently some glaciation in the lake effect clouds over land, however, because they do have a cyan tint to them.

Note how the easternmost lake effect band over Lake Michigan shows evidence of glaciation in the clouds.  There is a noticeable change in reflectance between 0.86 µm and 1.61 µm in the toggle below — and that region also shows cyan in the RGB.

0.86 µm and 1.61 µm imagery from GOES-16. 1524 UTC on 15 March 2017 (Click to enlarge)

Over the East Coast, this RGB helps better discriminate between low clouds and high. The example below, also from 1524 UTC on 15 March, cycles through the three channels and then shows the RGB.  The gradual glaciation of the ‘ocean effect’ clouds over the Atlantic is apparent east of New Jersey, as is the glaciation of some of the clouds in the north-south frontal band offshore.  Low clouds are bright in all three channels (0.64 µm, 0.86 µm and 1.61 µm) and therefore appear white-ish in the RGB. Snow on the ground in clear skies is dark in the 1.61 µm imagery and cyan in the RGB.

0.64 µm, 0.86 µm and 1.61 µm imagery and the computed RGB from GOES-16. 1524 UTC on 15 March 2017 (Click to enlarge)

Long-time readers of this blog are familiar with a MODIS-based product that also uses the 1.61 µm channel (in the green and blue) and the visible channel in the red to produce a Snow RGB that has Red snow and cirrus clouds, as shown in this figure from this recent blog post. The key channel for snow-detecting or cirrus-detecting RGBs is the 1.61 µm Channel because ice crystals strongly absorb radiation at that wavelength, reducing the solar reflectance.

Fact sheets are available on the 0.64 µm, 0.86 µm and 1.61 µm Channels on ABI.

====================================================================
Added, 17 March 2017

Icing RGB at 2002 UTC on 17 March 2017 (Click to enlarge)

The red visible (0.64 µm), veggie band (0.86 µm), snow/ice channel (1.61 µm) and RGB, above, gave information about snowcover in the Northeast in the wake of the strong winter storm on 13-15 March. The demarcation between snow and no snow is particularly apparent in central New Jersey. Note snow/land discrimination in the Veggie Band is reduced compared to the visible (click here for a toggle between the two channels) — because of very strong surface reflectance over bare ground. There are northwest-to-southeast streaks in the RGB imagery from southwestern Ontario into northeastern Pennsylvania. These are present because of cirrus clouds as highlighted by the Cirrus Channel at 1.38 µm.  The RGB is also able to distinguish between low clouds over western Pennsylvania, West Virginia and eastern Ohio (that are mostly white in the RGB) and higher ice-laden clouds that are cyan.

AWIPS Note:  Visible (0.47 µm and 0.64 µm) and Veggie Band (0.86 µm) imagery can show missing data in regions of high reflectance near solar Noon, because albedo values then can exceed 1.  When those bands are then used in RGBs, the missing data points are apparent. A fix on this to allow an albedo >1 is in progress.

Grass fires in Kansas, Oklahoma and Texas

March 6th, 2017 |

GOES-16 (left) and GOES-13 (right) 3.9 µm Shortwave Infrared images [click to play MP4 animation]

GOES-16 (left) and GOES-13 (right) 3.9 µm Shortwave Infrared images [click to play MP4 animation]

** The GOES-16 data posted on this page are preliminary, non-operational data and are undergoing testing. **

Widespread grass fires began to burn across parts of southwestern Kansas, northwestern Oklahoma and the Texas Panhandle on 06 March 2017. The fires grew very quickly during the late morning and early afternoon hours, due to strong southwesterly winds (with gusts as high as 67 mph in Oklahoma)  behind a dryline (surface analyses); a cold front then moved southward across the region during the late afternoon and evening hours, bringing strong northerly/northwesterly winds. In a comparison shown above of Shortwave Infrared (3.9 µm) images — 1-minute interval (Mesoscale Sector) 2-km resolution GOES-16 vs. 5-7 minute interval (Rapid Scan Operations) 4-km resolution GOES-13 (also available as a 204 Mbyte animated GIF) — a large fire (the Starbuck Fire) can be seen making a fast northeastward run from Oklahoma into Kansas behind the dryline; then, after the passage of the cold front, the leading edge of that and another large fire turned southward and moved from Kansas back into Oklahoma. Another large fire in the Texas Panhandle (the Perryton Fire) moved rapidly eastward and crossed the border into Oklahoma. At least 7 deaths have resulted from these fires (CNN).

===== 07 March Update =====

The large size of the grass fire burn scars could be seen in comparisons of true-color and false-color Red/Green/Blue (RGB) images from Terra MODIS (1732 UTC), Suomi NPP VIRS (1857 UTC) and Aqua MODIS (1912 UTC) images viewed using RealEarth (below).

Terra MODIS true-color and false-color images [click to enlarge]

Terra MODIS true-color and false-color images [click to enlarge]

Suomi NPP VIIRS true-color and false-color images [click to enlarge]

Suomi NPP VIIRS true-color and false-color images [click to enlarge]

Aqua MODIS true-color and false-color images [click to enlarge]

Aqua MODIS true-color and false-color images [click to enlarge]

The creation of true-color and false-color images such as these will be possible using the ABI spectral bands available on GOES-16 and the GOES-R series of satellites. A separate blog post highlighting other multi-spectral GOES-16 views of these fire burn scars on 07 March  is available here.

GOES-16: visible and true-color images of a solar eclipse shadow

February 26th, 2017 |

GOES-16 ABI Visible (0.64 µm) images [click to play animation]

GOES-16 ABI Visible (0.64 µm) images [click to play animation]

GOES-16 — the first of the GOES-R seriesABI visible (0.64 µm) images captured the Lunar Umbra (or solar eclipse shadow) of the “ring of fire” annular eclipse that occurred in the Southern Hemisphere on 26 February 2017. The dark eclipse shadow could be seen moving from west to east, beginning over the southern Pacific Ocean, passing over far southern Chile and Argentina, and finally moving over the southern Atlantic Ocean. GOES-16 will routinely scan the Full Disk every 15 minutes (the current GOES Full Disk scan interval is once every 3 hours), but in a special mode can scan the Full Disk every 5 minutes.

The path of the eclipse shadow (courtesy of EarthSky.org) is shown below.

Path of 26 February 2017 solar eclipse shadow [click to enlarge]

Path of 26 February 2017 solar eclipse shadow [click to enlarge]

True-color GOES-16 Red/Green/Blue (RGB) images are shown below (courtesy of Kaba Bah, CIMSS).

GOES-16 true-color images [click to play animation]

GOES-16 true-color images [click to play animation]

Note: the GOES-16 data posted on this page are preliminary, non-operational data and are undergoing on-orbit testing.