Tornado near Eureka, California

January 25th, 2018 |


A waterspout moved inland near the NWS Eureka forecast office during the late afternoon hours on 25 January 2018. The brief tornado caused some EF-0 damage (interestingly, it was the only report of severe weather in the US that day, and the first tornado in the Eureka forecast area since 1998).

A comparison of GOES-16 (GOES-East) “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.3 µm) images (below) showed the line of convection as it moved across the area (Eureka and the location of the 0040-0041 UTC tornado are a few miles south-southwest of the airport KACV) — the coldest cloud-top infrared brightness temperatures on the 0037 UTC and 0042 UTC GOES-16 images were -30.7ºC (dark blue color enhancement). Note: there were no western US images available from GOES-15 (GOES-West) between 0030 and 0100 UTC, due to a routine “New Day Schedule Transition” and a 0051 UTC Southern Hemisphere scan.

GOES-16

GOES-16 “Red” Visible (0.64 µm, left) and “Clean” Infrared Window (10.3 µm, right) images, with plots of hourly surface reports [click to play animation]

There was an overpass of the NOAA-19 satellite about 2 hours prior to the Eureka tornado, at 2251 UTC. If we compare the NOAA-19 Visible (0.63 µm) image to the corresponding GOES-16 Visible (0.64 µm) image (below), a parallax shift to the west is evident with GOES-16 (which was scanning that same scene only 24 seconds later than NOAA-19: 22:52:23 UTC vs 22:51:59 UTC).

NOAA-19 and GOES-16 Visible images at 2252 UTC, with plots of 23 UTC surface reports [click to enlarge]

NOAA-19 and GOES-16 Visible images at 2252 UTC, with plots of 23 UTC surface reports [click to enlarge]

In the corresponding Infrared Window images from NOAA-19 (10.8 µm) and GOES-16 (10.3 µm) (below), the parallax shift was also apparent — and the coldest cloud-top infrared brightness temperatures associated with the convection just northwest of KACV were -36.2ºC and -35.2ºC, respectively. Given the very high viewing angle for GOES-16 (about 67 degrees over Eureka), the qualitative and quantitative satellite presentation compared quite favorably to that seen from the more direct overpass of NOAA-19.

NOAA-19 and GOES-16 Infrared Window images at 2252 UTC, with plots of 23 UTC surface reports [click to enlarge]

NOAA-19 and GOES-16 Infrared Window images at 2252 UTC, with plots of 23 UTC surface reports [click to enlarge]

As mentioned in the afternoon Area Forecast Discussion, offshore Sea Surface Temperature (SST) values were in the 50-55ºF range; this was also seen in a comparison of the nighttime and daytime MODIS SST product (below). With the presence of cold air aloft and relatively warm water at the surface, the lower troposphere was unstable enough to support the development and growth of showers and thunderstorms.

MODIS Sea Surface Temperature product [click to enlarge]

MODIS Sea Surface Temperature product [click to enlarge]

Lake Michigan Mesovortex

December 31st, 2017 |

1-minute GOES-16

1-minute GOES-16 “Red” Visible (0.64 µm) images, with hourly surface reports plotted in yellow [click to play MP4 animation]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) showed a well-defined mesoscale vortex (or “mesovortex”) moving southward across southern Lake Michigan on 31 December 2017. The default western GOES-16 Mesoscale Sector provided images at 1-minute intervals. This feature was responsible for brief periods of heavy snow at locations such as South Haven, Michigan KLWA (beginning at 1455 UTC), Benton Harbor, Michigan KBEH (beginning at 1625 UTC) and La Porte, Indiana KPPO (from 2055 to 2115 UTC).

Comparisons of POES AVHRR/Terra MODIS/Suomi NPP Infrared (10.8 µm/11.0 µm/11.45 µm) and Visible (0.86 µm/0.65 µm/0.64 µm) images along with an overlay of the corresponding Real-Time Mesoscale Analysis (RTMA) surface winds (below) provided views of the mesovortex at 1522 UTC, 1714 UTC and 1852 UTC, respectively.

POES AVHRR Infrared (10.8 µm) and Visible (0.86 µm) images at 1522 UTC, with 15 UTC RTMA surface winds [click to enlarge]

POES AVHRR Infrared (10.8 µm) and Visible (0.86 µm) images at 1522 UTC, with 15 UTC RTMA surface winds [click to enlarge]

Terra MODIS Infrared (11.0 µm) and Visible (0.65 µm) images at 1714 UTC, with 17 UTC RTMA surface winds [click to enlarge]

Terra MODIS Infrared (11.0 µm) and Visible (0.65 µm) images at 1714 UTC, with 17 UTC RTMA surface winds [click to enlarge]

Suomi NPP Infrared (11.45 µm) and Visible (0.64 µm) images at 1852 UTC, with 19 UTC RTMA surface winds [click to enlarge]

Suomi NPP Infrared (11.45 µm) and Visible (0.64 µm) images at 1852 UTC, with 19 UTC RTMA surface winds [click to enlarge]

During the preceding nighttime hours, a comparison of Suomi NPP VIIRS Infrared (11.45 µm) and Day/Night Band (0.7 µm) images at 0729 UTC along with an overlay of 07 UTC RTMA surface winds (below) showed in spite of patchy thin cirrus clouds over the region, ample illumination from the Moon (which was in the Waxing Gibbous phase, at 96% of Full) enabled a signature of the early stage of mesovortex formation to be seen on the Day/Night Band (DNB) image. Ice crystals within the thin cirrus clouds were responsible for the significant scattering city light signatures on the DNB image.

Suomi NPP VIIRS Infrared (11.45 µm) and Day/Night Band (0.7 µm) images at 0729 UTC, with 07 UTC RTMA surface winds [click to enlarge]

Suomi NPP VIIRS Infrared (11.45 µm) and Day/Night Band (0.7 µm) images at 0729 UTC, with 07 UTC RTMA surface winds [click to enlarge]

As an aside, it is interesting to note that ice could be seen in the nearshore waters of Lake Michigan — both in the western part of the lake, off the coast of Wisconsin and Illinois, and in the eastern part of the lake off the coast of Lower Michigan. The lake ice appeared as darker shades of cyan in the 250-meter resolution Terra MODIS false-color (Band 7-2-1 combination) Red-Green-Blue (RGB) image from the MODIS Today site (below).

Terra MODIS true-color and false-color images over southern Lake Michigan [click to enlarge]

Terra MODIS true-color and false-color images over southern Lake Michigan [click to enlarge]

Alaska’s first -40º temperature of the 2017-2018 winter season

November 19th, 2017 |

NOAA-18 Infrared Window (10.8 mm) image, with surface identifiers and air temperatures plotted in red [click to enlarge]

NOAA-18 Infrared Window (10.8 mm) image, with surface identifiers and air temperatures plotted in red [click to enlarge]

Alaska’s first (official) surface air temperature of -40º or colder for the 2017-2018 winter season was reported by the Cooperative Observer at Chicken (-43ºF) on 19 November 2017. A NOAA-18 Infrared Window (10.8 µm) image at 0320 UTC (above) showed cold air drainage into river valleys, with the coldest infrared brightness temperatures around -40ºC/-40ºF (darker blue color enhancement). Chicken is located about midway between Eagle (PAEG) and Northway (PAOR), where 03 UTC surface air temperatures were -17ºF and -24ºF, respectively. However, PAEG reached their minimum temperature around 11 UTC after additional hours of cloud-free radiational cooling.

An automated RAWS site at Chicken reached a minimum temperature of -34ºF at 1120 UTC — the dew point at that time was -42ºF. However, a MesoWest map (below) shows that the RAWS tower is located on a small hill (at an elevation of 2060 feet) — and the Cooperative Observer instrument shelter was likely located in the lower elevations of the settlement.

MesoWest map showing the location of the Chicken RAWS site [click to enlarge]

MesoWest map showing the location of the Chicken RAWS site [click to enlarge]

For comparison, note the 2011-2012 and 2010-2011 winter seasons.

Detection of low clouds on “Cirrus band” imagery

October 29th, 2017 |

GOES-16 Visible (0.64 µm, top), Cirrus (1.37 µm, middle) and Infrared Window (10.3 µm, bottom) images [click to play animation]

GOES-16 Visible (0.64 µm, top), Cirrus (1.37 µm, middle) and Infrared Window (10.3 µm, bottom) images [click to play animation]

* GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *

The ABI “Cirrus” (1.37 µm) band is centered in a strong water vapor absorption spectral region — therefore it does not routinely sense the lower troposphere, where there is usually substantial amounts of water vapor. Hence, its main application is the detection of higher-altitude cirrus cloud features.

However, in areas of the atmosphere characterized by low amounts of total precipitable water, the Cirrus band can sense clouds (and other features, such as blowing dust) in the lower troposphere. Such was the case on 29 October 2017, when a ribbon of dry air resided over the northern Gulf of Mexico in the wake of a strong cold frontal passage; low-level stratocumulus clouds were very apparent on GOES-16 Cirrus band images (above). Also of note: cloud features associated with Tropical Storm Philippe could be seen east of Florida.

The three GOES-16 Water Vapor bands (Upper-level 6.2 µm, Mid-level 6.9 µm and Lower-level 7.3 µm) highlighted the pocket of dry air that was moving across the northern Gulf of Mexico on that day (below).

GOES-16 Upper-level Water Vapor (6.2 µm, top), Mid-level Water Vapor (6.9 µm, middle) and Lower-level Water Vapor (7.3 µm, bottom) images [click to play animation]

GOES-16 Upper-level Water Vapor (6.2 µm, top), Mid-level Water Vapor (6.9 µm, middle) and Lower-level Water Vapor (7.3 µm, bottom) images [click to play animation]

The MODIS instrument on Terra and Aqua has a 1.37 µm Cirrus band as well; 1619 UTC Terra images (below) also revealed the stratocumulus clouds (especially those over the northeastern Gulf, where the driest air resided). Conversely, note how the low cloud features of Philippe were not seen on the Cirrus image, since abundant moisture within the tropical air mass east of Florida attenuated 1.37 µm wavelength radiation originating from the lower atmosphere.

In addition, the VIIRS instrument — on Suomi NPP, and the upcoming JPSS series — has a 1.37 µm Cirrus band.

Terra MODIS visible (0.65 µm), Cirrus (1.375 µm) and Infrared Window (11.0 µm) images [click to enlarge]

Terra MODIS visible (0.65 µm), Cirrus (1.375 µm) and Infrared Window (11.0 µm) images [click to enlarge]

Hourly images of the MIMIC Total Precipitable Water product (below) showed the ribbon of very dry air (TPW values less than 10 mm or 0.4 inch) sinking southward over the northern Gulf of Mexico. This TPW product uses microwave data from POES, Metop and Suomi NPP satellites (description).

http://cimss.ssec.wisc.edu/goes/blog/wp-content/uploads/2017/10/tpw_17z.png

MIMIC Total Precipitable Water images [click to play animation]