Deadly tornado in Yancheng, China

June 23rd, 2016

Himawari-8 0.64 µm Visible (top) and 10.4 µm Infrared Window (bottom) images [click to play animation]

Himawari-8 0.64 µm Visible (top) and 10.4 µm Infrared Window (bottom) images [click to play animation]

Himawari-8 AHI Visible (0.64 µm) and Infrared Window (10.4 µm) images (above) showed the east-southeastward propagation of a mesoscale convective system which produced a deadly tornado in Yancheng, China around 2:30 pm local time on 23 June 2016 (Weather Underground blog). The location of Yancheng (33°23?N, 120°7?E) is denoted by the cyan * symbol, and the animation briefly pauses on the 0630 UTC images which match the reported time of the tornado. Overshooting tops are evident on the visible imagery, and cloud-top infrared brightness temperatures of -80º C or colder (violet color enhancement) also appear, even after the storm crossed the coast and moved over the adjacent offshore waters of the Yellow Sea (note: due to parallax, the apparent location of the storm top features is displaced several miles to the north-northwest of their actual position above the surface). The spatial resolutions (0.5 km visible, 2 km infrared) of the AHI images are identical to those of the corresponding spectral bands that will be available from the ABI instrument on GOES-R.

An experimental version of the MIMIC Total Precipitable Water product which uses the MIRS retrieval TPW from POES, Metop, and Suomi NPP VIIRS satellites (below) revealed the band of high moisture pooled along the Mei-yu front, which appeared to surge northward across eastern China early in the day on 23 June.

MIMIC Total Precipitable Water product [click to play animation]

MIMIC Total Precipitable Water product [click to play animation]

The 23 June/00 UTC rawinsonde report from Nanjing (located about 260 km southwest of Yancheng) indicated a total precipitable water value of 66.2 mm or 2.6 inches (below).

Nanjing, China rawinsonde report [click to enlarge]

Nanjing, China rawinsonde report [click to enlarge]

First full day of Summer: snow in the Brooks Range of Alaska

June 22nd, 2016

GOES-15 Water Vapor (6.5 µm) images [click to play animation]

GOES-15 Water Vapor (6.5 µm) images [click to play animation]

GOES-15 (GOES-West) Water Vapor (6.5 µm) images (above) showed the southeastward migration of an upper-level low across the North Slope and the eastern Brooks Range of Alaska during the 21 June – 22 June 2016 period. A potential vorticity (PV) anomaly was associated with this disturbance, which brought the dynamic tropopause — taken to be the pressure of the PV 1.5 surface — downward to below the 600 hPa pressure level over northern Alaska. Several inches of snow were forecast to fall in higher elevations of the eastern portion of the Brooks Range.

With the very large satellite viewing angle (or “zenith angle”) associated with GOES-15 imagery over Alaska  — which turns out to be 73.8 degrees for Fairbanks — the altitude of the peak of the Imager 6.5 µm water vapor weighting function (below) was shifted to higher altitudes (in this case, calculated using rawinsonde data from 12 UTC on 22 June, near the 300 hPa pressure level).

GOES-15 Imager water vapor (Band 3, 6.5 µm) weighting function [click to enlarge]

GOES-15 Imager water vapor (Band 3, 6.5 µm) weighting function [click to enlarge]

The ABI instrument on GOES-R will have 3 water vapor bands, roughly comparable to the 3 water vapor bands on the GOES-15 Sounder — the weighting functions for those 3 GOES-15 Sounder water vapor bands (calculated using the same Fairbanks rawinsonde data) are shown below. Assuming a similar spatial resolution as the Imager, the GOES-15 Sounder bands 11 (7.0 µm, green) and 12 (7.4 µm, red) would have allowed better sampling and visualization of the lower-altitude portion of this particular storm system. The 3 ABI water vapor bands are nearly identical to those on the Himawari-8 AHI instrument; an example of AHI water vapor imagery over part of Alaska can be seen here.

GOES-15 Sounder water vapor weighting function plots [click to enlarge]

GOES-15 Sounder water vapor weighting function plots [click to enlarge]

As the system departed and the clouds began to dissipate on 22 June, GOES-13 Visible (0.63 µm) images (below) did indeed show evidence of bright white snow-covered terrain on the northern slopes and highest elevations of the Brooks Range.

GOES-15 Visible (0.63 µm) images [click to play animation]

GOES-15 Visible (0.63 µm) images [click to play animation]

A sequence of 1-km resolution POES AVHRR Visible (0.86 µm) images (below) showed a view of the storm during the 21-22 June period, along with the resultant snow cover on 22 June. However, the snow quickly began to melt as the surface air temperature rebounded into the 50’s and 60’s F at some locations.

POES AVHRR Visible (0.86 µm) images [click to play animation]

POES AVHRR Visible (0.86 µm) images [click to play animation]

The increase in fresh snow cover along the northern slopes and the highest elevations of the central and northeastern Brooks Range — most notably from Anaktuvuk Pass to Fort Yukon to Sagwon — was evident in a comparison of Suomi NPP VIIRS true-color Red/Green/Blue (RGB) images from 17 June and 22 June, as viewed using RealEarth (below). The actual time of the satellite overpass on 22 June was 2134 UTC.

Suomi NPP VIIRS true-color RGB images, 17 June and 22 June [click to enlarge]

Suomi NPP VIIRS true-color RGB images, 17 June and 22 June [click to enlarge]

25-year anniversary of the 1991 Mount Pinatubo eruption

June 15th, 2016

GMS-4 Infrared Window (11.5 µm) images [click to play animation]

GMS-4 Infrared Window (11.5 µm) images [click to play animation]

During the first 2 weeks of June 1991 the Mount Pinatubo volcano on the island of Luzon in the Philippines began to produce a series of eruptions, culminating in the climactic eruption beginning at 0227 UTC on 15 June. An animation of 5-km resolution GMS-4 Infrared Window (11.5 µm) images (above) spans the period from 1831 UTC on 12 June to 1831 UTC on 16 June, and showed the very large volcanic cloud following the 15 June eruption (the animation pauses at the 0230 UTC image on 15 June — just after the time of the major eruption). Also evident in the imagery was the westward movement of what became Category 3 Typhoon Yunya (known locally in the Philippines as Diding) toward Luzon. A larger-scale version of the animation is available here.

A closer view of the GMS-4 Infrared Window (11.5 µm) images (below) revealed interesting characteristics of the volcanic plume which penetrated the tropopause (which was at an air temperature of around -83º C, according to nearby rawinsonde reports) during the 3-8 hours following the onset of the 0227 UTC eruption. Note the initial appearance of a small area of very warm IR cloud-top IR brightness temperatures (-21.6º C at 0631 UTC, and -25.7º C at 0730 UTC) which then blossomed outward and became a westward-moving stratospheric plume that was notably warmer than the majority of the cold volcanic cloud canopy (which exhibited IR brightness temperatures in the -80º to -90º C range, denoted by the violet to yellow color enhancement).

GMS-4 Infrared Window (11.5 µm) images [click to enlarge]

GMS-4 Infrared Window (11.5 µm) images [click to enlarge]

———————————————————————————————————-

NOAA-10 AVHRR Infrared Window (10.8 µm), Visible (0.91 µm) and Shortwave Infrared (3.7 µm) images [click to enlarge]

NOAA-10 AVHRR Infrared Window (10.8 µm), Visible (0.91 µm) and Shortwave Infrared (3.7 µm) images [click to enlarge]

A higher-resolution (1.1-km) view of the post-eruption cloud was provided by NOAA-10 AVHRR images at 1034 UTC on 15 June (above). Even though it was just past sunset over the Philippines, the narrow stratospheric plume could be seen towering above the canopy of the main volcanic cloud (the plume was at a high enough altitude — estimated at a maximum of 40 km (reference 1 | reference 2) — to still be illuminated by sunlight). The summit of Pinatubo is located 8.7 miles/14 km west-southwest of what was then Clark Air Force Base (station identifier RPLC). On the 10.8 µm Infrared Window image, cloud-top gravity waves could be seen propagating radially outward from the overshooting top located above the volcano (which exhibited a minimum IR brightness temperature of -86º C, violet color enhancement). Note the much warmer IR brightness temperatures (as warm as -31º C, green color enhancement) associated with the stratospheric plume just off the west coast of Luzon. A closer view is available here.

About 10 hours prior to the climactic eruption, a volcanic ash cloud from one of the earlier eruptions was captured by NOAA-10 AVHRR images at 2329 UTC on 14 June (below). Around this same time it can be seen that Yunya was making landfall as a minimal-intensity typhoon along the eastern coast of Luzon. A closer view is available here.

NOAA-10 AVHRR Infrared Window (10.8 µm), Visible (0.91 µm) and Shortwave Infrared (3.7 µm) images [click to enlarge]

NOAA-10 AVHRR Infrared Window (10.8 µm), Visible (0.91 µm) and Shortwave Infrared (3.7 µm) images [click to enlarge]

Mesoscale Convective Vortex (MCV) in Texas

June 12th, 2016

GOES-13 Infrared Window (10.7 µm) images [click to play animation]

GOES-13 Infrared Window (10.7 µm) images [click to play animation]

GOES-13 Infrared Window (10.7 µm) images (above) showed a large Mesoscale Convective System (MCS) that developed in far eastern New Mexico after 2000 UTC on 11 June 2016, then moved eastward and eventually southward over West Texas during the nighttime hours on 12 June. The MCS produced wind gusts to 75 mph and hail of 1.00 inch in diameter in Texas (SPC storm reports).

Suomi NPP VIIRS Infrared Window (11.45 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Infrared Window (11.45 µm) and Day/Night Band (0.7 µm) images [click to enlarge]


Suomi NPP VIIRS Infrared Window (11.45 µm) and Day/Night Band (0.7 µm) images at 0801 UTC or 3:01 am local time (above) showed cloud-top infrared brightness temperatures were as cold as -83º C (violet color enhancement), along with a number of bright streaks on the Day/Night Band image due to cloud illumination by intense lightning activity (there were around 5000 cloud-to-ground lightning strikes associated with this MCS). On the infrared image, note the presence of cloud-top gravity waves propagating outward away from the core of overshooting tops.

This MCS produced heavy rainfall, with as much as 3.44 inches reported near Lomax (NWS Midland TX rainfall map | PNS). An animation of radar reflectivity (below, courtesy of Brian Curran, NWS Midland) showed the strong convective cells moving southward (before the Midland radar was struck by lightning and temporarily rendered out of service).

Midland, Texas radar reflectivity [click to play MP4 animation]

Midland, Texas radar reflectivity [click to play MP4 animation]

During the subsequent daytime hours, GOES-13 Visible (0.63 µm) images (below) revealed the presence of a large and well-defined Mesoscale Convective Vortex (MCV) as the cirrus canopy from the decaying MCS eroded. A fantastic explanation of this MCV was included in the afternoon forecast discussion from NWS Dallas/Fort Worth. New thunderstorms were seen to develop over North Texas during the late afternoon and early evening hours as the MCV approached — there were isolated reports of hail and damaging winds with this new convection (SPC storm reports). Initiation of this new convection may have also been aided by convergence of the MCV with a convective outflow boundary moving southward from Oklahoma.

GOES-13 Visible (0.63 µm) images [click to play animation]

GOES-13 Visible (0.63 µm) images [click to play animation]

A sequence of Visible images from POES AVHRR (0.86 µm), Terra MODIS (0.65 µm), and Suomi NPP VIIRS (0.64 µm) (below) showed snapshots of the MCV at various times during the day.

Visible images from POES AVHRR (0.86 µm), Terra MODIS (0.65 µm), and Suomi NPP VIIRS (0.64 µm) [click to enlarge]

Visible images from POES AVHRR (0.86 µm), Terra MODIS (0.65 µm), and Suomi NPP VIIRS (0.64 µm) [click to enlarge]