Grassland fires in Kansas

April 12th, 2014
GOES-13 3.9 µm shortwave IR images (click to play animation)

GOES-13 3.9 µm shortwave IR images (click to play animation)

Numerous grassland fires began to burn across parts of eastern Kansas (and also extreme northeastern Oklahoma) during the afternoon hours on 11 April 2014. AWIPS images of 4-km resolution GOES-13 3.9 µm shortwave IR channel data (above; click image to play animation) showed that many of these fires continued to burn into the overnight hours — the largest and most intense fire “hot spot” (black to yellow to red color enhancment) was seen northwest of Emporia, Kansas (station identifier KEMP) at 06:40 UTC or 1:40 AM local time, which exhibited an IR brightness temperature of 40º C. Smoke from these fires reduced the surface visibility as low as 2 miles at Manhattan (KMHK) and 4 miles at Topeka (KTOP). However, as high cirrus clouds began to move over the region later in the night and toward dawn, identification of the fire hot spots on GOES imagery became more difficult.

A comparison of 1-km resolution Suomi NPP VIIRS 3.74 µm and 4-km resolution GOES-13 3.9 µm shortwave IR images just after 07 UTC or 2 AM local time (below) demonstrated the advantage of higher spatial resolution for detecting not only the locations of many of the smaller fire hot spots, but also for providing a more accurate value of the intensity of the larger, hotter fires; in this case, the highest IR brightness temperature of the larger fire northwest of Emporia on the VIIRS image was 50.5º C (red color enhancement), compared to only 22.5º C (darker black color enhancement) on the GOES-13 image.

Suomi NPP VIIRS 3.74 µm and GOES-13 3.9 µm shortwave IR images

Suomi NPP VIIRS 3.74 µm and GOES-13 3.9 µm shortwave IR images

Since these fires were burning at night, they also exhibited bright signatures on the 0.7 µm Suomi NPP VIIRS Day/Night Band (DNB) image; lights from cities and towns also appeared as bright spots on the DNB image, but a comparison with the corresponding VIIRS 3.74 µm shortwave IR image helped to identify which could be attributed to actively burning fires (below).

Suomi NPP VIIRS 0.7 µm Day/Night Band and 3.74 µm shortwave IR images

Suomi NPP VIIRS 0.7 µm Day/Night Band and 3.74 µm shortwave IR images

As mentioned above, high cirrus clouds moving over the region later in the night made fire hot spot identification more difficult on the 4-km resolution GOES-13 shortwave IR imagery. However, a 1-km resolution POES AVHRR 3.74 µm shortwave IR image at 11:50 UTC or 6:50 AM local time (below) was able to detect a number of fire hot spots (darker black pixels) through the cirrus cloud features.

POES AVHRR 3.74 µm shortwave IR image

POES AVHRR 3.74 µm shortwave IR image

Convectively-generated mesospheric airglow waves over Texas

April 4th, 2014
GOES-13 10.7 µm IR channel images (click to play animation)

GOES-13 10.7 µm IR channel images (click to play animation)

AWIPS images of 4-km resolution GOES-13 (GOES-East) 10.7 µm IR channel images with overlays of cloud-to-ground lightning strikes and surface frontal positions (above; click image to play animation) showed the explosive development of a thunderstorm just ahead of a cold frontal boundary that was moving southeastward across southern Texas during the overnight hours on 04 April 2014 (06 UTC surface analysis). This relatively small thunderstorm was very active in terms of lightning production, and eventually produced hail of 1.0 to 1.75 inches in diameter and damaging winds (SPC storm reports) as it approached the coast of Texas. Cloud-top IR temperatures were as cold as -73º C on the GOES-13 images.

A 1-km resolution POES AVHRR 12.0 µm IR image at 08:41 UTC or 3:41 AM local time (below) exhibited cloud-top IR brightness temperatures as cold as -79º C. Overlays on the IR image include cloud-to-ground lightning strikes around the time of the IR image, along with the eventual reports of hail that this storm produced about an hour later. South of the thunderstorm, the banded signatre of a pre-frontal lower-tropospheric undular bore could also be seen across deep south Texas.

POES AVHRR 12.0 µm IR channel image, with cloud-to-ground lightning strikes and hail reports

POES AVHRR 12.0 µm IR channel image, with cloud-to-ground lightning strikes and hail reports

A comparison of 1-km resolution Suomi NPP VIIRS 11.45 µm IR and 0.7 µm Day/Night Band images at 08:05 UTC or 3:05 AM local time (below) showed an “enhanced-V” signature associated with the thunderstorm, with very cold IR brightness temperatures of -86º C at the vertex of the enhanced-V. The Day/Night Band (DNB) image also showed a number of very bright “streaks” near McMullen, Texas (station identifier KNMT), a signature of portions of the cloud which were illuminated by intense lightning activity. The blurred signatures of bright city lights could even be seen through the clouds. Also, note on the DNB image the presence of curved bands off the Texas coast, over the Gulf of Mexico: what could those be?

Suomi NPP VIIRS 11.45 µm IR channel and 0.7 µm Day/Night Band images, with overlays of positive and negative cloud-to-ground lightning strikes

Suomi NPP VIIRS 11.45 µm IR channel and 0.7 µm Day/Night Band images, with overlays of positive and negative cloud-to-ground lightning strikes

A larger-scale view of the VIIRS IR and Day/Night Band images (below) revealed a remarkably large pattern of concentric mesospheric airglow waves (reference) propagating radially outward away from the region where the thunderstorm had explosively developed and penetrated the tropopause about an hour earlier. Unlike the cloud bands associated with the lower-tropospheric undular bore in deep south Texas, there was no signature of these mesospheric airglow waves on the VIIRS IR image.

Suomi NPP VIIRS 0.7 µm Day/Night Band and 11.45 µm IR channel images

Suomi NPP VIIRS 0.7 µm Day/Night Band and 11.45 µm IR channel images

A Skew-T / Log-p plot of the 12 UTC rawinsonde data from Corpus Christi, Texas (below) indicated that the coldest temperature above the tropopause was around -71º C — so the -86º C IR brightness temperature seen on the VIIRS IR image suggests a vigorous thunderstorm overshooting top which penetrated the tropopause and ascended a significant distance into the lower stratosphere. Such a vigorous overshooting top likely triggered the upward-propagating mesospheric airglow waves. The sounding profile also showed how unstable the airmass was ahead of the advancing cold front: the Lifted Index was -11.6º C, and the Convective Available Potential Energy (CAPE, which is labelled on the sounding analysis as “POSITIVE ENERGY ABV LFC”) of 4218 J/kg. Such high convective instability would allow a thunderstorm updraft to reach a high upward vertical velocity.

Plot of 12 UTC Corpus Christi, Texas rawinsonde data

Plot of 12 UTC Corpus Christi, Texas rawinsonde data

10-km resolution GOES-13 sounder Cloud Top Height derived prodcut images (below) indicated maximum thunderstorm top values of 44,230 feet (brightest white color enhancement), which was around the altitude of the tropopause level on the Corpus Christi rawinsonde data.

GOES-13 sounder Cloud Top Height derived product images

GOES-13 sounder Cloud Top Height derived product images

For additional information and images of this mesospheric airglow wave event, see the CIRA/RAMMB VIIRS Imagery and Visualization Team blog.

Widespread blowing dust across the south-central US

March 18th, 2014
GOES-13 0.63 µm visible channel images (click to play animation)

GOES-13 0.63 µm visible channel images (click to play animation)

McIDAS images of GOES-13 0.63 µm visible channel data (above; click image to play animation) showed two very large blowing dust features during the afternoon hours on 18 March 2014: one moving southward out of southeastern Colorado, and another moving eastward out of New Mexico across Texas and Oklahoma. Winds gusted to 75 mph in southeastern Colorado, and 60 mph in the Texas Panhandle; surface visibilities were reduced to near zero at times at some locations. As a result, some highways were closed in southeastern Colorado. Another significant blowing dust event had impacted much of this same region one week earlier.

GOES-13 0.63 µm visible channel images with METAR surface reports (click to play animation)

GOES-13 0.63 µm visible channel images with METAR surface reports (click to play animation)

Taking a closer look at the large southward-moving dust plume with AWIPS images of GOES-13 0.63 µm visible channel data (above; click image to play animation) and GOES-13 3.9 µm shortwave IR channel data (below; click image to play animation), it can be seen that a large wildfire began to burn around 19:15 UTC (2:15 PM local time) near the Texas/Oklahoma border as the strong winds associated with the leading edge of the dust storm moved through. The hot fire (yellow to red to black pixels on the shortwave IR images) produced pyrocumulus clouds and a smoke plume that rose above the top of the dust layer, high enough to cast a shadow due to the low sun angle at the end of the day. Note from the distance scale on the lower left portion of the visible images that this “wall of dust” was at least 300 miles wide.

GOES-13 3.9 µm shortwave IR images with METAR surface reports (click to play animation)

GOES-13 3.9 µm shortwave IR images with METAR surface reports (click to play animation)

The CLAVR-x POES AVHRR Cloud Top Height product (below) indicated that the top of the southward-moving dust layer was generally 1-2 km above ground level (cyan to light green color enhancement).

POES AVHRR Cloud Top Height product

POES AVHRR Cloud Top Height product

Terra and Aqua MODIS true-color Red/Green/Blue (RGB) images visualized using the SSEC RealEarth web map server (below) revealed that the composition of the dust from the 2 source regions took on a different appearance, indicating that the nature and composition of the aerosols were different.

Terra and Aqua MODIS true-color RGB images

Terra and Aqua MODIS true-color RGB images

AWIPS images of the Terra and Aqua MODIS “reverse absorption” 11-12 µm IR brightness temperature difference product (below) offered another method of identifying the areas where the airborne dust was the most dense.

Terra and Aqua MODIS 12.0-11.0 µm IR brightness temperature difference product

Terra and Aqua MODIS 12.0-11.0 µm IR brightness temperature difference product

Additional satellite images from this event can be found on the Wide World of SPoRT and RAMMB: GOES-R Proving Ground Blog sites.

===== 19 March Update =====

IDEA-I forecast aerosol trajectories (click to play animation)

IDEA-I forecast aerosol trajectories (click to play animation)

The IDEA-I MODIS Aerosol Optical Depth product indicated that much of the airborne dust remained over southern and eastern Texas on 19 March. Forecast forward trajectories (above; click image to play animation) suggested that some of this dust would get recirculated back northward across western Texas, and eventually move over Kansas in 24-48 hours.

Blowing dust over southern Texas

December 19th, 2013
GOES-13 0.63 µm visible channel images (click to play animation)

GOES-13 0.63 µm visible channel images (click to play animation)

Strong southerly winds (gusting over 30 mph) generated a plume of blowing dust that originated in far northeastern Mexico and moved over Deep South Texas on the afternoon hours of 19 December 2013. McIDAS images of GOES-13 0.63 µm visible channel data (above; click image to play animation) showed the plume as it moved northward; surface visibility dropped as low as 2.5 miles at Jim Hogg Country Airport (station identifier KHBV) at 23:35 UTC.

A signal of the airborne dust plume was evident on an AWIPS image of the MODIS 11-12 µm IR brightness temperature difference (below). At the time of the MODIS image the surface visibility had dropped to 5 miles at McAllen, Texas (station identifier KMFE).

MODIS 11-12 µm IR brightness temperature difference

MODIS 11-12 µm IR brightness temperature difference

The hazy tan signature of the blowing dust plume was also quite evident on the corresponding 250-meter resolution MODIS true-color Red/Green/Blue (RGB) image (below).

Aqua MODIS true-color RGB image

Aqua MODIS true-color RGB image

The POES AVHRR Cloud Top Height product at 20:55 UTC (below) indicated that the top of the blowing dust plume was at 2 km above ground level.

POES AVHRR Cloud Top Height product

POES AVHRR Cloud Top Height product