GOES-14 SRSO-R: Convection over Wyoming/Montana, and the Storm Hill Fire in South Dakota

April 24th, 2016

GOES-14 Visible (0.63 µm) images, with surface plots [click to play MP4 animation]

GOES-14 Visible (0.63 µm) images, with surface plots [click to play MP4 animation]

GOES-14 was in SRSO-R mode on 23 April24 April 2016, providing 1-minute Visible (0.63 µm) images (above; also available as a large 115 Mbyte animated GIF) which showed the development of convection over far northern Utah/Colorado, much of Wyoming, southern Montana, and far western South Dakota during the daytime hours of 23 April. Some of this convection produced moderate to heavy rainfall (and some accumulating snowfall) across Wyoming and southern Montana.

Hat tip to Jim Strain, who sent out the Tweet:

Taking a closer look at the Black Hills of South Dakota with GOES-14 Visible (0.63 µm) and Shortwave Infrared (3.9 µm) images (below; also available as a large 151 Mbyte animated GIF), one can see intermittent smoke plumes from the Storm Hill Fire (located near the center of the red circle) on the Visible images during the late afternoon and early evening hours, with the continuation of a fire “hot spot” signature (dark black to yellow color enhancement) on the Shortwave Infrared images into the nighttime hours. The maximum shortwave IR brightness temperature was 324 K at 0424 UTC (10:24 pm local time); the fire hot spot became obscured by dense cloud cover after about 0600 UTC. Highways are plotted in dashed magenta lines on the images.

GOES-14 0.63 µm Visible (left) and 3.9 µm Shortwave Infrared (right) images [click to play MP4 animation]

GOES-14 0.63 µm Visible (left) and 3.9 µm Shortwave Infrared (right) images [click to play MP4 animation]

GOES-14 SRSO-R: occluded low pressure in the Upper Midwest

April 21st, 2016

GOES-14 Visible (0.63 um) images, with plots of surface weather symbols in cyan and hail reports in yellow  [click to play MP4 animation]

GOES-14 Visible (0.63 um) images, with plots of surface weather symbols in cyan and hail reports in yellow [click to play MP4 animation]

The GOES-14 satellite was in SRSO-R mode on 21 April 2016, providing 1-minute Visible (0.63 um) images (above; also available as a large 253 Mbyte animated GIF) of the clouds associated with an occluded surface low (surface analyses) in the Upper Midwest. Near the end of the day, thunderstorms in Illinois produced hail of 1.00 and 1.25 inches in diameter (SPC storm reports | HWT Blog post 1 | HWT Blog post 2).

GOES-14 SRSO-R: convective outflow boundary in southern Texas

April 20th, 2016

GOES-14 Visible (0.63 µm) images [click to play MP4 animation]

GOES-14 Visible (0.63 µm) images [click to play MP4 animation]

1-minute interval SRSO-R GOES-14 Visible (0.63 µm) images (above; also available as a large 259 Mbyte animated GIF) showed a curved outflow boundary — produced by a strong quasi-linear convective system the preceding overnight hours in northern Texas — which continued to propagate southward across southern Texas during the day on 20 April 2016. New clusters of convection formed along and in the wake of the eastern portion of the outflow boundary (which dropped an additional 0.67 inch of rainfall in one hour across the flood-ravaged Houston area), while the western portion was marked by a low-level arc cloud.

On the corresponding GOES-14 Water Vapor (6.5 µm) images (below; also available as a large 126 Mbyte animated GIF), a very subtle signature of the western  part of the outflow boundary could be seen in the dryer atmosphere (where the water vapor weighting functions were shifted to lower altitudes). Also of interest were a few long and narrow contrails which appeared within that same dry region of the atmosphere after about 1800 UTC — these thin contrails were not evident in the GOES-14 visible or infrared imagery.

GOES-14 Water Vapor (6.5 µm) images [click to play MP4 animation]

GOES-14 Water Vapor (6.5 µm) images [click to play MP4 animation]

A comparison of the 3 Water Vapor bands (6.5 µm, 7.0 µm and 7.4 µm) available from the GOES-14 sounder instrument (below) demonstrated how each of the individual bands was detecting radiation emitted from a different layer of the troposphere; this was further shown by examining plots of the water vapor weighting functions for the 1 imager and the 3 sounder water vapor bands (calculated using 12 UTC rawinsonde data from Del Rio, Texas KDRT). The ABI instrument on GOES-R will have 3 water vapor bands similar to those on the current generation sounder instrument, but with significantly improved spatial and temporal resolution.

GOES-14 sounder Water Vapor bands 6.5 µm (top), 7.0 µm (middle) and 7.4 µm (bottom) images [click to play animation]

GOES-14 sounder Water Vapor bands 6.5 µm (top), 7.0 µm (middle) and 7.4 µm (bottom) images [click to play animation]

Eruption of the Mount Pavlof volcano in Alaska

March 28th, 2016

Himawari-8 AHI Shortwave Infrared (3.9 µm) images [click to play animation]

Himawari-8 AHI Shortwave Infrared (3.9 µm) images [click to play animation]

A major eruption of the Mount Pavlof volcano on the Alaska Peninsula began shortly before 0000 UTC on 28 March, or 4:00 pm on 27 March Alaska time (AVO report), as detected by a thermal anomaly (or “hot spot”, yellow to red color enhancement) on Himawari-8 AHI Shortwave Infrared (3.9 µm) images (above). The hot spot decreased in size and intensity toward the later hours of the day, signaling a lull in the volcanic eruption.

It is interesting to note on a comparison of the 0000 UTC Himawari-8 and GOES-15 Shortwave Infrared (3.9 um) images the large difference in the magnitude of the thermal anomaly — even though the viewing angle was larger for Himawari-8, the superior spatial resolution (2 km at nadir, compared to 4 km with GOES-15) detected a hot spot with an Infrared Brightness Temperature (IR BT) that was 36.6 K warmer (below). The Infrared channels on the GOES-R ABI instrument will also have a 2 km spatial resolution.

Himawari-8 AHI (left) and GOES-15 Imager (right) 3.9 µm Shortwave Infrared images [click to enlarge]

Himawari-8 AHI (left) and GOES-15 Imager (right) 3.9 µm Shortwave Infrared images [click to enlarge]

With the aid of reflected light from the Moon (in the Waxing Gibbous phase, at 75% of Full), a nighttime view using the Suomi NPP VIIRS Day/Night Band (0.7 µm) from the SSEC RealEarth site (below) revealed the bright glow of the eruption, along with the darker (compared to adjacent meteorological clouds) volcanic ash cloud streaming northeastward. The corresponding VIIRS Shortwave Infrared (3.74 µm) image showed the dark black hot spot of the volcano summit.

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) image [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) image [click to enlarge]

The volcanic ash cloud continued moving in a northeastward direction, as seen in a sequence of GOES-15 Infrared Window (10.7 µm) and either Terra/Aqua MODIS or Suomi NPP VIIRS retrieved Volcanic Ash Height products from the NOAA/CIMSS Volcanic Could Monitoring site (below).

GOES-15 Infrared (10.7 µm) images, with Terra/Aqua MODIS and Suomi NPP VIIRS Ash Height products [click to play animation]

GOES-15 Infrared (10.7 µm) images, with Terra/Aqua MODIS and Suomi NPP VIIRS Ash Height products [click to play animation]

Due to the oblique satellite view angle, the shadow cast by the tall volcanic ash cloud was easily seen on the following early morning (Alaska time) Himawari-8 AHI Visible (0.64 µm) images (below). A closer view (courtesy of Dan Lindsey, RAMMB/CIRA) revealed overshooting tops and gravity waves propagating downwind of the eruption site.

Himawari-8 AHI Visible (0.64 um) images (click to play animation]

Himawari-8 AHI Visible (0.64 um) images (click to play animation]

A few select Pilot reports (PIREPs) are shown below, plotted on GOES-15 Infrared Window (10.7 µm) and Aqua MODIS Ash Height derived products. Numerous flights were canceled as the ash cloud eventually began to drift over Western and Interior Alaska (media report).

GOES-15 Infrared Window (10.7 um) image, with METAR surface reports and Pilot reports [click to enlarge]

GOES-15 Infrared Window (10.7 µm) image, with METAR surface reports and Pilot reports [click to enlarge]

GOES-15 Infrared Window (10.7 um) image, with METAR surface reports and Pilot reports [click to enlarge]

GOES-15 Infrared Window (10.7 µm) image, with METAR surface reports and Pilot reports [click to enlarge]

GOES-15 Infrared Window (10.7 um) image, with METAR surface reports and Pilot reports [click to enlarge]

GOES-15 Infrared Window (10.7 µm) image, with METAR surface reports and Pilot reports [click to enlarge]

Aqua MODIS Ash Height product, with METAR surface reports and Pilot reports [click to enlarge]

Aqua MODIS Ash Height product, with METAR surface reports and Pilot reports [click to enlarge]

GOES-15 Infrared Window (10.7 um), with METAR surface reports and Pilot reports [click to enlarge]

GOES-15 Infrared Window (10.7 µm), with METAR surface reports and Pilot reports [click to enlarge]

A comparison of Suomi NPP VIIRS Shortwave Infrared (3.74 µm), Day/Night Band (0.7 µm), and true-color Red/Green/Blue (RGB) images (below) showed the volcanic hot spot and the brown to tan colored ash cloud at 2141 UTC on 28 March. Significant ash fall (as much as 2/3 of an inch) was experienced at the village of Nelson Lagoon, located 55 miles northeast of Pavlof (media report).

Suomi NPP VIIRS Shortwave Infrared (3.74 µm), Day/Night Band (0.7 µm), and true-color RGB images [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm), Day/Night Band (0.7 µm), and true-color RGB images [click to enlarge]

A comparison of the 3 Himawari-8 AHI Water Vapor bands (7.3 µm, 6.9 µm and 6.2 µm) covering the first 14 hours of the eruption from 0000 to 1400 UTC is shown below. Note that volcanic plume was best seen on the 7.3 µm images, which indicated that it began to move over the coast of Western Alaska after around 0600 UTC; this is due to the fact that the 7.3 µm band is not only a “water vapor absorption” band, but is also sensitive to high levels of SO2 loading in the atmosphere (as was pointed out in this blog post).

Himawari-8 AHI Water Vapor 7.3 µm (left), 6.9 µm (center) and 6.2 µm (right) images [click to play animation]

Himawari-8 AHI Water Vapor 7.3 µm (left), 6.9 µm (center) and 6.2 µm (right) images [click to play animation]