The GOES-16 ABI Veggie channel at 0.86 µm

March 1st, 2017 |

GOES-16 Red Visible (0.64 µm) and Veggie (0.86 µm) bands over Florida, 21:11 UTC on 01 March 2017 (Click to enlarge)

Note: GOES-16 data shown on this page are preliminary, non-operational data and are undergoing on-orbit testing.

The ABI Band at 0.86 µm (Fact Sheet) allows superior land/sea discrimination. This occurs because land is more reflective to radiation at 0.86 µm than to radiation at 0.64 µm. The toggle above shows Florida in the standard visible (0.64 µm) and at 0.86 µm. Coastal boundaries and islands (such as the Keys and the Bahamas) are far more distinct in the near-infrared so-called ‘veggie’ channel at 0.86 µm. Inland lakes are also better defined with the 0.86 µm channel. Because the land is so bright, land/cloud contrast is reduced in the 0.86 µm imagery, so clouds over land appear more distinct in the 0.64 µm imagery.

The toggle below shows a similar scene over the Tidewater region of southeast Virginia and points to the south.  Again, inland lakes and rivers and the coastal boundary is more apparent in the 0.86 µm imagery than in the 0.64 µm imagery.

GOES-16 Red Visible (0.64 µm) and Veggie (0.86 µm) bands over the mid-Atlantic States, 20:01 UTC on 01 March 2017 (Click to enlarge)

Use the 0.86 µm band when land/water distinction is important!

Because ABI does not have a spectral band in the ‘green’ part of the electromagnetic spectrum (Band 1 at 0.47 µm is in the blue, Band 2 at 0.64 µm is in the red), information from the 0.86 µm band is used in construction of simulated ‘true color’ imagery (as discussed here).

In addition, the 0.86 µm channel provides useful burn scar information in ‘False Color’ imagery (that combines 2.2 µm, 0.86 µm and 0.64 µm imagery) because burn scars appear dark in 0.86 µm imagery.

Leave a Reply