Eruption of Mount Shishaldin in Alaska

January 19th, 2020 |

Topography along with Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images at 1323 UTC [click to enlarge]

Topography along with Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images at 1323 UTC [click to enlarge]

Following two days of increasing seismicity, Mount Shishaldin began a period of more intense eruptive activity around 0930 UTC on 19 January 2020 — a comparison of topography along with Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images at 1323 UTC (above) displayed a distinct thermal anomaly (cluster of red 3.74 µm pixels) and a volcanic cloud moving east-southeastward.

Comparisons of Shortwave Infrared and Infrared Window images from Suomi NPP VIIRS and GOES-17 ABI (below) revealed a parallax shift that is inherent with geostationary imagery at high latitudes.

Comparison of Shortwave Infrared images from Suomi NPP VIIRS (3.74 um) and GOES-17 ABI (3.9 um) [click to enlarge]

Comparison of Shortwave Infrared images from Suomi NPP VIIRS (3.74 µm) and GOES-17 ABI (3.9 µm) [click to enlarge]

Comparison of Infrared Window images from Suomi NPP VIIRS (11.45 µm) and GOES-17 ABI (10.35 µm) [click to enlarge]

Comparison of Infrared Window images from Suomi NPP VIIRS (11.45 µm) and GOES-17 ABI (10.35 µm) [click to enlarge]

A toggle between GOES-17 parallax correction vectors and magnitudes for cloud top heights of 15,000 feet (4.5 km) and 30,000 feet (9.1 km) are shown below —  the amount of northwestward volcanic cloud displacement between the Suomi NPP and GOES-17 Infrared images roughly matched the 16 km (or 10 mile) value for a 15,000 foot cloud top in that region of the Full Disk. Later advisories listed the maximum ash height at 20,000-30,0000 feet.

GOES-17 parallax correction vectors (green) and magnitudes (km, red) [click to enlarge]

GOES-17 parallax correction vectors (green) and magnitudes (km, red) [click to enlarge]

1-minute Mesoscale Domain Sector GOES-17 (GOES-West) Split Cloud Top Phase (11.2 – 8.4 µm) images (below) displayed an increasing volcanic ash signal (negative values, darker blue to violet enhancement) beginning around 01 UTC on 20 January. Some light ash fall was reported at False Pass, Alaska.

GOES-17 Split Cloud Top Phase (11.2 - 8.4 um) images [click to play animation | MP4]

GOES-17 Split Cloud Top Phase (11.2 – 8.4 µm) images [click to play animation | MP4]

10-minute images of GOES-17 radiometrially retreived Ash Height from the NOAA/CIMSS Volcanic Cloud monitoring site (below) indicated that the bulk of the ash plume existed within the 2-6 km altitude range.

GOES-17 Ash Height product [click to play animation | MP4]

GOES-17 Ash Height product [click to play animation | MP4]

In corresponding GOES-17 False Color Red-Green-Blue (RGB) images (below), the volcanic plume exhibited shades of red/magenta/pink — the characteristic signature of an ash-laden cloud.

GOES-17 False Color RGB [click to play animation | MP4]

GOES-17 False Color RGB [click to play animation | MP4]

Eruption of the Taal Volcano in the Philippines

January 12th, 2020 |

Himawari-8

Himawari-8 “Red” Visible (0.64 µm, left) and “Clean” Infrared Window (10.4 µm, right) images [click to play animation | MP4]

The Taal Volcano erupted in the Philippines around 0850 UTC on 12 January 2020. JMA Himawari-8 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.4 µm) images (above) displayed the volcanic cloud during the initial 3 hours post-eruption. Note the presence of a pronounced “warm wake” (red enhancement) downwind (north) of the summit of Taal — this appeared to be an Above-Anvil Cirrus Plume (AACP), as seen in a toggle between the Visible and Infrared images at 1910 UTC (below).

Himawari-8 "Red" Visible (0.64 µm) and "Clean" Infrared Window (10.4 µm) images at 1910 UTC [click to enlarge]

Himawari-8 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.4 µm) images at 1910 UTC [click to enlarge]

The warmest Himawari-8 10.4 µm brightness temperatures within the Above-Anvil Cirrus Plume were around -60ºC (red enhancement), which corresponded to approximately 21 km on data from 3 rawinsonde sites in the Philippines (Legaspi, Mactan and Laoag) (below).

Plots of rawinsonde data from Legaspi, Mactan and Laoag in the Philippines [click to enlarge]

Plots of rawinsonde data from Legaspi, Mactan and Laoag in the Philippines [click to enlarge]

The TROPOMI detected SO2 at altitude of 20km on 13 January:


A longer animation of Himawari-8 Infrared imagery revealed the intermittent presence of the warm wake feature until about 1400 UTC. The coldest 10.4 µm cloud-top brightness temperature was -89.7ºC.

Himawari-8 "Clean" Infrared Window (10.4 µm) images [click to play animation | MP4]

Himawari-8 “Clean” Infrared Window (10.4 µm) images [click to play animation | MP4]

A large-scale view of Himawari-8 Infrared images (below) showed that the volcanic cloud was advected a great distance north-northeastward.

Himawari-8 "Clean" Infrared Window (10.4 µm) images [click to play animation | MP4]

Himawari-8 “Clean” Infrared Window (10.4 µm) images [click to play animation | MP4]

A toggle between NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images (below) showed the volcanic cloud at 1649 UTC.

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 1648 UTC (credit: William Straka, CIMSS) [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 1648 UTC (credit: William Straka, CIMSS) [click to enlarge]

In a sequence of Split Window Difference (11-12 µm) images (Terra MODIS, NOAA-20 VIIRS and Suomi NPP VIIRS) from the NOAA/CIMSS Volcanic Cloud Monitoring site (below), there was only a subtle ash signature (blue enhancement) immediately downwind of the Taal summit — due to the large amount of ice within the upper portion of the volcanic cloud, the infrared spectral ash signature was significantly masked.

Split Window Difference (11-12 um) images from Terra MODIS, NOAA-20 VIIRS and Suomi NPP VIIRS [click to enlarge]

Split Window Difference (11-12 µm) images from Terra MODIS, NOAA-20 VIIRS and Suomi NPP VIIRS [click to enlarge]

Of interest was the fact that Manila International Airport (RPLL) reported a thunderstorm at 15 UTC — there was a large amount of lightning produced by Taal’s volcanic cloud.

===== 14 January Update =====

GOES-17 SO2 RGB images [click to play animation | MP4]

GOES-17 SO2 RGB images [click to play animation | MP4]

2 days after the eruption, the leading edge of Taal’s SO2-rich volcanic plume (brighter shades of yellow over areas of cold clouds) began to appear within the far western view of GOES-17 (GOES-West) Full Disk SO2 Red-Green-Blue (RGB) images (above), about 1000 miles southeast of Japan. There were also some thin filaments of SO2 (brighter shades of white over warm ocean areas) moving southward, about 1500 miles west of Hawai’i.

Eruption of Popocatépetl in Mexico

January 9th, 2020 |

GOES-16 Low-, Mid- and Upper-level Water Vapor (7.3 µm, 6.9 µm and 6.2 µm), Split Window Difference (10.3-12.3 µm) and Cloud Top Height product [click to play animation | MP4]

GOES-16 Low-, Mid- and Upper-level Water Vapor (7.3 µm, 6.9 µm and 6.2 µm), Split Window Difference (10.3-12.3 µm) images [click to play animation | MP4]

Popocatépetl erupted at 1226 UTC on 09 January 2019 — GOES-16 (GOES-East) images of Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level Water Vapor (6.2 µm) and Split Window Difference (10.3-12.3 µm) (above) showed a higher-altitude ash plume moving rapidly south-southeastward, while ash at a lower altitude moved slowly north-northeastward.

The difference in speed and direction of ash transport was explained by plots of rawinsonde data from Mexico City and Acapulco at 12 UTC (below), which revealed stronger northwesterly winds within the 200-250 hPa pressure layer, with lighter southerly to southwesterly winds existing between 400 and 600 hPa.

Plots of rawinsonde data from Mexico City and Acapulco at 12 UTC [click to enlarge]

Plots of rawinsonde data from Mexico City (yellow) and Acapulco (cyan) at 12 UTC [click to enlarge]

At 1402 UTC a Mesoscale Domain Sector was positioned over Mexico — and 1-minute GOES-16 Ash RGB images created using Geo2Grid (below) tracked the distinct signature of the northern lower-altitude ash (brighter shades of pink to red) while the southern higher-altitude ash signature faded as it was more quickly dispersed by the stronger winds.

GOES-16 Ash RGB images {click to play animation | MP4]

GOES-16 Ash RGB images [click to play animation | MP4]

A GOES-16 Ash Height product from the NOAA/CIMSS Volcanic Cloud Monitoring site (below) indicated that the southern ash plume exhibited heights in the 6-8 km range, with similar heights seen for the slow-moving northern ash feature.

GOES-16 Ash Height product [click to play animation MP4]

GOES-16 Ash Height product [click to play animation MP4]

Eruption of the Whakaari volcano on White Island, New Zealand

December 9th, 2019 |

“Red” Visible (0.64 µm) images from Himawari-8 (left) and GOES-17 (right) [click to play animation | MP4]

A brief eruption of the Whakaari volcano on White Island, New Zealand occurred around 0110 UTC on 09 December 2019 — “Red” Visible (0.64 µm) images from JMA Himawari-8 and GOES-17 (GOES-West) showed the small volcanic cloud as it fanned out east of the island (above).

A signature of the volcanic cloud was also seen in VIIRS True Color Red-Green-Blue (RGB) and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP, as viewed using RealEarth (below). The cloud exhibited a rather warm infrared brightness temperature, since the Wellington VAAC only estimated the maximum height to be

VIIRS True Color RGB and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

VIIRS True Color RGB and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

The volcanic plume contained elevated levels of SO2 which drifted south-southeastward, as seen in a McIDAS-V image of Sentinel-5 TROPOMI Vertical Column SO2 at 0206 UTC (below).

Sentinel-5 TROPOMI Vertical Column SO2 (credit: Bob Carp, SSEC) [click to enlarge]

Sentinel-5 TROPOMI Vertical Column SO2 (credit: Bob Carp, SSEC) [click to enlarge]