Fog/stratus dissipation in southern Louisiana

October 30th, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

The topic of a conversation on Twitter, GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) revealed curious circular areas of fog/stratus dissipation across southern Louisiana on the morning of 30 October 2018. — making it a natural candidate for the “What the heck is this?” blog category.

GOES-16 GEOCAT Low IFR Probability and Fog/Low Stratus Depth products (below) indicated that this fog and low stratus had been increasing in coverage and spreading northward across Louisiana during the preceding nighttime hours (VIIRS fog/stratus Brightness Temperature Difference images) — and the fog/stratus was relatively shallow, only having a depth of about 300 feet or less. In fact, if you look closely at the Visible animation above, a few small spots of slightly brighter cloud can be seen in the vicinity of Baton Rouge KBTR which are tall objects (such as refinery stacks, and even the State Capitol building) protruding above the fog/stratus and acting as an obstacle to their flow.

GOES-16 Low Instrument Flight Rules (IFR) Probability [click to play animation | MP4]

GOES-16 Low Instrument Flight Rules (IFR) Probability [click to play animation | MP4]

GOES-16 Fog/Low Stratus Depth product [click to play animation | MP4]

GOES-16 Fog/Low Stratus Depth product [click to play animation | MP4]

A sequence of 4-panel comparisons of GOES-16 “Blue” Visible (0.47 µm), “Red” Visible (0.64 µm) and Near-Infrared “Vegetation” (0.86 µm) images with Near-Infrared “Snow/Ice” (1.61 µm), Near-Infrared “Cloud Particle Size” (2.24 µm) and Shortwave Infrared (3.9 µm) images (below) showed no indication of any substantial differences between the cloud material within the circular features and the adjacent fog/stratus. The largest “outer rings” of the dissipating fog/stratus areas had a small amount of vertical extent, which cast a shadow that was best seen in the Near-Infrared 0.86 µm and 1.61 µm images.

4-panel comparisons of GOES-16

Sequence of 4-panel comparisons of GOES-16 “Blue” Visible (0.47 µm), “Red” Visible (0.64 µm), Near-Infrared “Vegetation” (0.86 µm), “Snow/Ice” (1.61 µm), and “Cloud Particle Size” (2.24 µm), and Shortwave Infrared (3.9 µm) images [click to play animation | MP4]

The most plausible explanation for the circular dissipation features turned out to be fires that were set in sugar cane fields following harvest — particulates in the smoke could have “seeded” the fog/stratus cloud layer, either changing the particle size distribution or making the cloud more susceptible to faster dissipation after sunrise due to solar heating of black carbon nuclei within the cloud droplets.  An Aqua MODIS Shortwave Infrared (3.7 µm) image from the previous afternoon (below) did reveal a number of small thermal anomalies or fire “hot spots” (yellow to red pixels) across the region at 1909 UTC (2:09 PM local time).

Aqua MODIS Shortwave Infrared (3.7 µm) image [click to enlarge]

Aqua MODIS Shortwave Infrared (3.7 µm) image [click to enlarge]

Similarly, GOES-16 Shortwave Infrared images on 29 October (below) also showed signatures of widespread small and generally short-lived fires (darker black pixels) across southern Louisiana. Surface winds were very light across that area (KARA | KPTN | KNBG | KMSY | KNEW), minimizing smoke dispersion from any fires.

GOES-16 Shortwave Infrared (3.9 µm) images [click to play animation | MP4]

GOES-16 Shortwave Infrared (3.9 µm) images [click to play animation | MP4]

Waves over the Upper Midwest / Great Lakes

June 23rd, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with hourly plots of surface reports [click to play animation]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) revealed a curious pattern of waves moving east-northeastward across a patch of mid-level clouds over central Lake Michigan during the morning hours on 23 June 2018.

In an effort to determine the vertical extent of these waves, a look at GOES-16 Low-level Water Vapor (7.3 µm), Mid-level Water Vapor (6.9 µm) and Upper-level Water Vapor (6.2 µm) images from the UW-Madison AOS site (below) showed a signature of waves propagating northeastward across the region during the 0802-2102 UTC time period.

GOES-16 Low-level Water Vapor (7.3 µm) images [click to play MP4 animation]

GOES-16 Low-level Water Vapor (7.3 µm) images [click to play MP4 animation]

GOES-16 Mid-level Water Vapor (6.9 µm) images [click to play MP4 animation]

GOES-16 Mid-level Water Vapor (6.9 µm) images [click to play MP4 animation]

GOES-16 Upper-level Water Vapor (6.2 µm) images [click to play MP4 animation]

GOES-16 Upper-level Water Vapor (6.2 µm) images [click to play MP4 animation]

There also were scattered pilot reports of light to moderate turbulence across the region as these waves were moving through, including one report of continuous Clear Air Turbulence at 36,000 feet over eastern Wisconsin.  Due to the subtle nature of these waves, their signature was not as obvious in the 8-bit McIDAS-X Water Vapor images shown below as they were in 16-bit imagery displayed above (or what would be displayed using AWIPS II).

GOES-16 Low-level (7.3 µm) images, with hourly pilot reports of turbulence [click to play animation]

GOES-16 Low-level Water Vapor (7.3 µm) images, with hourly pilot reports of turbulence [click to play animation]

GOES-16 Mid-level (6.9 µm) images, with hourly pilot reports of turbulence [click to play animation]

GOES-16 Mid-level Water Vapor (6.9 µm) images, with hourly pilot reports of turbulence [click to play animation]

GOES-16 Upper-level (6.2 µm) images, with hourly pilot reports of turbulence [click to play animation]

GOES-16 Upper-level Water Vapor (6.2 µm) images, with hourly pilot reports of turbulence [click to play animation]

The waves were passing over eastern Wisconsin around the time of ascent of the 12 UTC sounding balloon launched from Green Bay (and continuous turbulence was reported at 38,000 feet) — a plot of weighting functions for the three GOES-16 Water Vapor bands (below) showed peak pressures in the 424-328 hPa (22,800-28,885 feet) range, although significant contributions of energy were still evident from the 300 hPa pressure level (31,000 feet) or higher.

GOES-16 Water Vapor weighting functions, calculated using 12 UTC rawinsonde data from Green Bay, Wisconsin [click to enlarge]

GOES-16 Water Vapor weighting functions, calculated using 12 UTC rawinsonde data from Green Bay, Wisconsin [click to enlarge]

About an hour prior to the start of the 2-km resolution (at nadir or sub-satellite point) GOES-16 Water Vapor animations, 1-km resolution Aqua MODIS Water Vapor (6.7 µm) imagery at 0801 UTC (below) showed a long narrow wave packet (oriented northwest to southeast) from far western Wisconsin to central Illinois — and these waves were also apparent along the tops of mid-level clouds along the Iowa/Illinois border. Was this the leading edge of the waves seen farther northeast over the Great Lakes during the subsequent morning and afternoon hours?

Aqua MODIS Water Vapor (6.7 µm) and Infrared Window (11.0 µm) images, with plots of pilot reports [click to enlarge]

Aqua MODIS Water Vapor (6.7 µm) and Infrared Window (11.0 µm) images, with plots of pilot reports [click to enlarge]

All things considered, the lack of a clear forcing mechanism for these waves qualifies this case to be placed into the “What the heck is this” blog category until a coherent explanation can be put forward…

High cloud shadow over eastern Iowa

June 18th, 2018 |

It’s always good to get a question that lends itself well to the “What the heck is this?” blog category. The answer, as is often the case, relies on an examination of imagery from a variety of GOES-16 ABI bands.  To begin, note the darker feature seen on 1-minute Mesoscale Domain Sector GOES-16 “Blue” Visible (0.47 µm), “Red” Visible (0.64 µm) and Near-Infrared “Vegetation” (0.86 µm) images (below), which was moving northeastward across eastern Iowa and passing just to the west of Waterloo (KALO) on the morning of 18 June 2018.

GOES-16 "Blue" Visible (0.47 µm), "Red" Visible (0.64 µm) and Near-Infrared "Snow/Ice" (1.61 µm) images

GOES-16 “Blue” Visible (0.47 µm, left), “Red” Visible (0.64 µm, center) and Near-Infrared “Vegetation” (0.86 µm, right) images [click to play animation | MP4]

To explore the initial hypothesis that this might be a shadow from a higher-altitude cloud feature, GOES-16 Near-Infrared “Cirrus” (1.37 µm), Mid-level Water Vapor (6.9 µm) and Upper-level Water Vapor (6.2 µm) images were examined (below), which did indeed reveal a small cloud element aloft that was drifting in the same direction as the darker feature seen above.

GOES-16 Near-Infrared

GOES-16 Near-Infrared “Cirrus” (1.37 µm, left), Mid-level Water Vapor (6.9 µm, center) and Upper-level Water Vapor (6.2 µm, right) images [click to play animation | MP4]

Finally, a comparison of GOES-16 Near-Infrared “Cirrus” (1.37 µm), Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.3 µm) images (below) showed that this small (and likely thin) high-altitude cloud exhibited no signature in the Shortwave Infrared, but did exhibit a 10.3 µm brightness temperature as cold as -20ºC (cyan enhancement) at times.

GOES-16 Near-Infrared

GOES-16 Near-Infrared “Cirrus” (1.37 µm, left), Shortwave Infrared (3.9 µm, center) and “Clean” Infrared Window (10.3 µm, right) images [click to play animation | MP4]

12 UTC rawinsonde data from Davenport, Iowa (below) showed southwesterly winds and an air temperature just below -20ºC at an altitude of around 9.6 km.

12 UTC rawinsonde data from Davenport, Iowa [click to enlarge]

12 UTC rawinsonde data from Davenport, Iowa [click to enlarge]

Thanks to Andrew Ansorge (NWS DMX) and Rich Mamrosh (NWS GRB) for alerting us to this interesting feature!

Upwind-propagating bore over southern Lake Michigan

June 1st, 2018 |

GOES-16 Visible (0.64 µm) Visible Imagery at 1-minute intervals from 1337 to 1658 UTC on 1 June 2018 (Click to play mp4 animation)

GOES-16 Visible Imagery on 1 June revealed an interesting feature behind a lake-enhanced cold front that swept south into Indiana and Illinois (another aspect of this feature is discussed here). Atmospheric waves developed in the cloud layer over the south shore of Lake Michigan and propagated upwind towards Chicago. The mp4 animation above (Click here for a full-res very large animated gif) shows 1-minute imagery from the western default GOES-16 Mesoscale sector. (At 1659 UTC, that sector was repositioned to the west to monitor convection in the northern Plain States).

CONUS-scale imagery was able to sample the evolution of this system at 5-minute intervals, as shown below (Click here for an animation without the surface observations).

There is a considerable thermal gradient between the lake surface and the land over Indiana and Illinois. This Land Surface Baseline Product shows surface temperatures in the low 40s over the Lake and surface temperatures in the mid-80s over northwest Indiana. This strong thermal gradient likely influenced the development of these unusual waves. An aircraft sounding from 1535 UTC (here, courtesy TJ Turnage) shows the very strong inversion that was also important in the evolution of the waves.

GOES-16 Visible (0.64 µm) Visible Imagery at 5-minute intervals from 1102 to 1917 UTC on 1 June 2018, along with hourly surface plots (Click to play animated gif)

(Thanks to TJ Turnage, NWS GRR for alerting us to this event!)

Added, 5 June:  Clark Evans, UW-Milwaukee, hypothesizes that the waves may have been forced by the (relatively) tall dunes in Indiana along the south shore of Lake Michigan.   Those dunes may have been tall enough to block the flow under a very sharp inversion.