Eruption of the Popocatépetl Volcano in Mexico

January 25th, 2016

Soumi NPP VIIRS true-color RGB images [click to enlarge]

Soumi NPP VIIRS true-color RGB images [click to enlarge]

The Popocatépetl Volcano in Mexico began erupting at 1546 UTC on 20 January 2016 (Washington VAAC message). The volcanic plume was evident on Suomi NPP VIIRS true-color Red/Green/Blue (RGB) images on 23, 24, and 25 January, as viewed using the SSEC RealEarth web map server (above).

Nighttime images of Suomi NPP VIIRS Shortwave Infrared (3.9 µm), Longwave Infrared Window (11.45 µm), and Day/Night Band (0.7 µm) images at 0817 UTC on 25 January (below, courtesy of William Straka, SSEC) revealed the hot spot of the erupting volcano summit (orange pixels), and ample illumination from the Moon allowed the plume to be seen on the Day/Night Band image. The large areas of bright city lights from Mexico City and Pueblo (located northwest and southeast of Popocatépetl, respectively) are also very apparent on the Day/Night Band image.

Suomi NPP VIIRS Shortwave Infrared (3.9 µm), Longwave Infrared Window (11.45 µm), and Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.9 µm), Longwave Infrared Window (11.45 µm), and Day/Night Band (0.7 µm) images [click to enlarge]

A legacy product for use in the detection of volcanic ash plumes is the Infrared “Split-Window” (11-12 µm) brightness temperature difference product (below), which showed the plume streaming eastward to northeastward during the 24-25 January period.

Terra/Aqua MODIS and Suomi NPP VIIRS Infrared "Split Window" (11-12 µm) Brightness Temperature Difference product images [click to enlarge]

Terra/Aqua MODIS and Suomi NPP VIIRS Infrared “Split Window” (11-12 µm) Brightness Temperature Difference product images [click to enlarge]

Taking advantage of the multi-spectral imagery available from the MODIS and VIIRS instruments on the Terra/Aqua ans Suomi NPP satellites, quantitative products can be derived such as Ash Height, Ash Loading, Ash Effective Radius, and Ash Probability from the NOAA/CIMSS Volcanic Coud Monitoring (below).

Terra/Aqua MODIS and Suomi NPP VIIRS Volcanic Ash Height product [click to enlarge]

Terra/Aqua MODIS and Suomi NPP VIIRS Volcanic Ash Height product [click to enlarge]

Terra/Aqua MODIS and Suomi NPP VIIRS Volcanic Ash Loading product [click to enlarge]

Terra/Aqua MODIS and Suomi NPP VIIRS Volcanic Ash Loading product [click to enlarge]

Terra/Aqua MODIS and Suomi NPP VIIRS Volcanic Ash Effective Radius product [click to enlarge]

Terra/Aqua MODIS and Suomi NPP VIIRS Volcanic Ash Effective Radius product [click to enlarge]

Terra/Aqua MODIS and Suomi NPP VIIRS Volcanic Ash Probability product [click to enlarge]

Terra/Aqua MODIS and Suomi NPP VIIRS Volcanic Ash Probability product [click to enlarge]

Mount Rinjani volcanic ash plume

November 4th, 2015

Suomi NPP VIIRS true-color RGB images [click to enlarge]

Suomi NPP VIIRS true-color RGB images [click to enlarge]

The Mount Rinjani volcano in Indonesia began a period of eruptions on 25 October 2015; the ash plume became very apparent on Suomi NPP VIIRS true-color Red/Green/Blue (RGB) images from RealEarth on 03 and 04 October (above). The volcanic ash disrupted flights at Denpasar Airport in Bali (the red dot at the southern tip of the island) for several days.

A GOES-R volcanic ash height product (derived using Himawari-8 AHI data) from the SSEC Volcanic Cloud Monitoring site indicated that the plume reached heights of 10 km (dark blue color enhancement) at times during the 03-04 October period (below).

Himawari-8 Volcanic Ash Height product [click to play animation]

Himawari-8 Volcanic Ash Height product [click to play animation]

McIDAS-V images of Suomi NPP VIIRS Day/Night Band (0.7 µm), near-IR (1.6 µm), shortwave IR (3.74 µm), and IR (11.45 µm) images (below, courtesy of William Straka, SSEC) showed the hot spot and nighttime glow of the summit of the Rinjani volcano at 1733 UTC on 04 November.

Suomi NPP VIIRS Day/Night Band (0.7 µm), near-IR (1.6 µm), shortwave IR (3.74 µm), and IR (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm), near-IR (1.6 µm), shortwave IR (3.74 µm), and IR (11.45 µm) images [click to enlarge]

Eruption of the Cotopaxi volcano in Ecuador

August 14th, 2015

GOES-13 visible (0.63 µm) images [click to play animation]

GOES-13 visible (0.63 µm) images [click to play animation]

GOES-13 visible (0.63 µm) images (above; click to play animation) displayed distinct dark-gray ash plumes from 2 separate daytime eruptions of the Cotopaxi volcano in Ecuador on 14 August 2015 (there was also an initial eruption that occurred during the preceding nighttime hours). The asterisk near the center of the images marks the location of the volcano summit. Volcanic ash fall was observed in the capitol city of Quito (station identifier SEQU, located about 50 km or 30 miles north of the volcano), and some flights were diverted due to the volcanic ash cloud.

The corresponding GOES-13 infrared (10.7 µm) images (below; click image to play animation) showed that cloud-top IR brightness  temperatures were as cold a -53º C (orange color enhancement) at 1915 UTC.

GOES-13 infrared (10.7 µm) images [click to play animation]

GOES-13 infrared (10.7 µm) images [click to play animation]

The volcanic cloud features were also easily tracked on GOES-13 water vapor (6.5 µm) images (below; click image to play animation). In fact, note how the signature in the water vapor imagery is more distinctly seen for a longer period of time than on the 10.7 µm infrared imagery.

 GOES-13 water vapor (6.5 µm) images [click to play animation]

GOES-13 water vapor (6.5 µm) images [click to play animation]

The tan-colored volcanic ash cloud was also evident on Aqua MODIS and Suomi NPP VIIRS true-color Red/Green/Blue (RGB) imagery (below), as viewed using the SSEC RealEarth web map server.

Aqua MODIS true-color images [click to enlarge]

Aqua MODIS true-color images [click to enlarge]

Suomi NPP VIIRS true-color image [click to enlarge]

Suomi NPP VIIRS true-color image [click to enlarge]

A comparison of Suomi NPP VIIRS visible (0.64 µm) and infrared (11.45 µm) images is shown below (courtesy of William Straka, SSEC). The coldest cloud-top IR brightness temperature was -72.7º C.

Suomi NPP VIIRS visible (0.64 µm) and infrared (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS visible (0.64 µm) and infrared (11.45 µm) images [click to enlarge]

Eruption of the Kuchinoerabu-jima volcano in Japan

May 29th, 2015
Himawari-8 AHI 0.64 µm visible channel images (click to play animation)

Himawari-8 AHI 0.64 µm visible channel images (click to play animation)

The Kuchinoerabu-jima volcano in Japan experienced a violent eruption beginning around 00:59 UTC on 29 May 2015 — the expanding volcanic cloud was captured by 0.5-km resolution Himawari-8 AHI 0.64 µm visible channel images (above; click image to play animation; also available as an MP4 movie file). A mid-layer volcanic cloud was seen moving to the west-northwest, while a high-altitude plume spread out as it moved east-southeastward.

About an hour after the eruption, Terra MODIS products at 0205 UTC from the SSEC Volcanic Cloud Monitoring site are shown below. Retrieved volcanic Ash Probabilities were very high for both cloud segments; for the southeastern cloud segment, the maximum volcanic Ash Height was in the 10-12 km range, volcanic Ash Loading was high, and the largest Ash Effective Radius values were in the 8-10 um range.

Terra MODIS false-color RGB image

Terra MODIS false-color RGB image

Volcanic Ash Probability product

Volcanic Ash Probability product

Volcanic Ash Height product

Volcanic Ash Height product

Volcanic Ash Loading product

Volcanic Ash Loading product

Volcanic Ash Effective Radius product

Volcanic Ash Effective Radius product