Eruptions of Popocatépetl in Mexico

November 23rd, 2017 |

GOES-16 Visible (0.64 µm, left) and Infrared Window (10. µm, right) images, with plots of hourly surface reports [click to play animation]

GOES-16 Visible (0.64 µm, left) and Infrared Window (10.3 µm, right) images, with plots of hourly surface reports [click to play animation]

* GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *

An eruption of Mexico’s Popocatépetl volcano — the largest since 2013 — occurred on 23 November 2017. The volcanic cloud was evident in GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.3 µm) images (above) as it drifted southward. However, due to the relatively thin nature of the cloud (a result of low values of ash loading), 10.3 µm infrared brightness temperatures were quite warm (greater than -20ºC), making a height determination from the single-band infrared imagery alone rather difficult.

This example demonstrates the value of using multi-spectral image techniques to derive retrieved products — available from the NOAA/CIMSS Volcanic Cloud Monitoring site — such as Ash Height (below). In this case, the retrieved ash cloud height was 7 km or 24,000 feet (darker green enhancement0, even for portions of the cloud with relatively low ash loading.

Ash Cloud Height product [click to play animation]

Ash Cloud Height product [click to play animation]

During the following nighttime hours, another eruption occurred, this time sending ash to a slightly higher altitude of 8 km or 26,000 feet (below).

Ash Cloud Height product [click to play animation]

Ash Cloud Height product [click to play animation]

A GOES-16 GeoColor animation can be seen here.

————————————-

Two of the channels on GOES-16 detect radiation in parts of the electromagnetic spectrum where sulfur dioxide (SO2) absorbs radiation: Band 10 (7.3 µm, the low-level Water Vapor channel) and Band 11 (8.4 µm, the Infrared Cloud Phase channel, see in particular the figure on the first page of the Quick Guide). The SO2 Red-Green-Blue (RGB) Composite was designed to highlight volcanic plumes, using the Brightness Temperature Difference between the mid-level and low-level Water Vapor Channels (6.9 µm7.3 µm) as the Red Component, the Brightness Temperature Difference between the Clean Infrared Window (Band 13, 10.3 µm) and the Infrared Cloud Phase (Band 11, 8.4 µm) as the Green Component, and the Clean Infrared Window (Band 13, 10.3 µm) as the Blue Component.  The eruption is obvious in the SO2 RGB imagery, below, with magenta and blue values apparent.  The volcanic plume’s appearance differs markedly from that of the convection along the Pacific coast of Mexico south and west of the eruption.

GOES-16 SO2 RGB, 2023 UTC 23 November 2017 – 2148 UTC 23 November 2017 (Click to animate)

Eruption of Bogoslof in Alaska’s Aleutian Islands

May 28th, 2017 |

Himawari-8 Visible (0.64 µm, left) and Infrared Window (10.4 µm, right) images, with hourly surface and ship reports plotted in yellow [click to play animation]

Himawari-8 Visible (0.64 µm, left) and Infrared Window (10.4 µm, right) images, with hourly surface and ship reports plotted in yellow [click to play animation]

The Bogoslof volcano in Alaska’s Aleutian Islands erupted around 2216 UTC on 29 May 2017. A comparison of Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images (above; MP4) showed the volcanic cloud as it drifted north/northeastward.

A very oblique view of the volcanic cloud was captured by Korean COMS-1 satellite at 2315 UTC (below).

COMS-1 Visible (0.67 µm) images, with surface observations plotted in yellow [click to enlarge]

COMS-1 Visible (0.67 µm) images, with surface observations plotted in yellow [click to enlarge]

Himawaari-8 false-color images from the NOAA/CIMSS Volcanic Cloud Monitoring site (below) revealed the initial signature of a volcanic cloud — however, this signature became less distinct after about 02 UTC on 29 May.

Himawari-8 false-color RGB images [click to play animation]

Himawari-8 false-color RGB images [click to play animation]

A different type of Himawari-8 false-color imagery (below) makes use of the 8.5 µm spectral band, which can help to infer the presence of sulfur dioxide within a volcanic cloud feature. A similar 8.4 µm band is available from the ABI instrument on the GOES-R series of satellites.

Himawari-8 false-color images [click to play animation]

3Himawari-8 false-color images [click to play animation]

A blend of Himawari-8 Infrared Window (10.4 µm) and radiometrically-retrieved Ash Cloud Height is shown below; the maximum ash cloud height was generally in the 10-12 km (33,000-39,000 feet above sea level) range (dark blue color enhancement). A volcanic ash signal was no longer apparent after 2320 UTC — this was likely due to enhanced ash particle removal via water (both liquid and ice) related processes.

Himawari-8 Infrared Window (10.4 µm) images and Ash Cloud Height retrievals [click to play animation]

Himawari-8 Infrared Window (10.4 µm) images and Ash Cloud Height retrievals [click to play animation]

A DigitalGlobe WorldView image at 2234 UTC (below) provided remarkable detail of the Bogoslof volcanic cloud shortly after the eruption began.


Eruption of Kambalny volcano in Kamchatka, Russia

March 25th, 2017 |

Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images [Click to play animation]

Himawari-8 Visible (0.64 µm) and Infrared Window (10.4 µm) images [Click to play animation]

The Kambalny volcano in far southern Kamchatka, Russia erupted around 2120 UTC on 24 March 2017. A Himawari-8 “Target Sector” was positioned over that region — providing rapid-scan (2.5-minute interval) imagery — as seen in a 2-panel comparison of AHI Visible (0.64 µm) and Infrared Window (10.4 µm) data covering the first 7 hours of the eruption (above). Ash plume infrared brightness temperatures quickly became -40ºC and colder (bright green enhancement).

Himarari-8 false-color RGB images [click to play animation]

Himarari-8 false-color RGB images [Click to play animation]

Himawari-8 false-color Red/Green/Blue (RGB) images from the NOAA/CIMSS Volcanic Cloud Monitoring site (above) showed the ash plume drifting south-southwestward during the subsequent nighttime hours. It is interesting to note the formation and subsequent northwestward motion of numerous contrails (darker green linear features) across the region, due to the close proximity of a major Tokyo flight corridor.

True-color RGB images from Terra MODIS, Suomi NPP VIIRS and Aqua MODIS, viewed using RealEarth (below) revealed the long ash plume during the late morning and early afternoon on 25 March. The dark signature of ash fall onto the snow-covered terrain was evident on the Terra and Aqua images, just west of the high-altitude ash plume.

Terra MODIS, Suomi NPP VIIRS and Aqua MODIS true-color RGB images [Click to enlarge]

Terra MODIS, Suomi NPP VIIRS and Aqua MODIS true-color RGB images [Click to enlarge]

26 March Update: a closer view of Terra MODIS true-color images from 25 and 26 March (below) showed that the perimeter of the darker gray surface ash fall signature had fanned out in both the west and east directions.

Terra MODIS truecolor RGB images from 25 and 26 March, with arrows indicating the perimeter of surface ash fall signatures on each day [Click to enlarge]

Terra MODIS truecolor RGB images from 25 and 26 March, with arrows indicating the perimeter of surface ash fall signatures on each day [Click to enlarge]

Eruption of Alaska’s Bogoslof volcano

December 22nd, 2016 |

Himawari-8 0.64 µm (left) and GOES-15 0.63 µm (right) Visible images [click to play animation]

Himawari-8 0.64 µm (left) and GOES-15 0.63 µm (right) Visible images [click to play animation]

Following a short-lived eruption on 21 December, the Bogoslof volcano in the eastern Aleutian Island chain of Alaska erupted again at about 0110 UTC on 22 December 2016. The volcanic cloud could be seen moving north/northeastward away from Bogoslof (denoted by the yellow * symbol) on Himawari-8 and GOES-15 Visible images (above). The higher spatial and temporal resolution from Himawari-8 (0.5 km at nadir, with images every 10 minutes) provided a more detailed view of the cloud feature compared to GOES-15 (with 1.0 km resolution at nadir, and images every 15 minutes); however, the ABI instrument on the GOES-R series will have an identical 0.5 km resolution Visible band. Another Himawari-8 Visible image animation is available from RAMMB.

Multispectral Red/Green/Blue (RGB) images from the NOAA/CIMSS Volcanic Cloud Monitoring site (below) displayed a signal of the volcanic cloud during the ~2.5 hours following the onset of the eruption — since this particular RGB combination uses the 3.9 µm Shortwave Infrared band, the volcanic cloud feature appeared as darker shades of magenta during the first few images while reflected solar illumination was present before sunset.

Himawari-8 false-color RGB images [click to play animation]

Himawari-8 false-color RGB images [click to play animation]

Another variant of RGB images (below) uses the 8.5 µm “cloud top phase” band, which is also sensitive to SO2 absorption; in this case, the appearance of the volcanic cloud feature was dominated by shades of yellow, indicating high levels of SO2.

Himawari-8 false-color RGB images [click to play animation]

Himawari-8 false-color RGB images [click to play animation]

A comparison of the 3 Himawari-8 water vapor bands (below) showed that a strong signature of the volcanic cloud was seen on the lower-tropospheric 7.3 µm band; this was due to the fact that the 7.3 µm band is also sensitive to elevated levels of SO2 loading in the atmosphere (which was also noted at the bottom of this Mount Pavlof eruption blog post). These same 3 water vapor bands (Upper-level, Mid-level and Lower-level) will be available from the GOES-R series ABI instrument.

Himawari-8 6.2 µm (top), 6.9 µm (middle) and 7.3 µm (bottom) Water Vapor images [click to play animation]

Himawari-8 6.2 µm (top), 6.9 µm (middle) and 7.3 µm (bottom) Water Vapor images [click to play animation]

A closer view using Himawari-8 false-color images (below) includes a magenta polygon surrounding the volcanic cloud soon after the onset of the eruption — this is an example of an experimental automated volcanic eruption alerting system. According to Michael Pavolonis (NOAA/NESDIS), “Using our automated cloud object tracking algorithm, the eruption produced a cloud at 01:30 UTC that was about 19 deg C colder than the background imaged by Himawari-8 at 01:20 UTC.  Taking into account the pixel size, background cloud cover, and time interval between successive images, the 19 deg C change is about an 11 standard deviation outlier relative to a very large database of meteorological clouds.  The vertical growth anomaly calculation is the basis of one the components of our experimental automated volcanic eruption alerting system”.

Himawari-8 false-color images, with a polygon surrounding the volcanic cloud [click to enlarge]

Himawari-8 false-color images, with a polygon surrounding the volcanic cloud [click to enlarge]

The creation of RGB images such as those shown above will be possible from the GOES-R series of satellites (beginning with GOES-16), since the ABI instrument has the 8.4 µm and 12.3 µm bands that are not available from the current generation of GOES imager instruments.

Additional satellite images of this event are available from NWS Anchorage.