GOES-14 SRSO-R: central Montana wildfire

August 15th, 2015

GOES-15 (left), GOES-14 (center), and GOES-13 (right) 3.9 µm shortwave IR images [click to play MP4 animation]

GOES-15 (left), GOES-14 (center), and GOES-13 (right) 3.9 µm shortwave IR images [click to play MP4 animation]

A comparison of 4-km resolution GOES-15 (GOES-West), GOES-14, and GOES-13 (GOES-East) 3.9 µm shortwave infrared images (above; click to play MP4 animation; also available as a 9.4 Mbyte animated GIF) showed the development and evolution of the “hot spot” (dark black to yellow to red color enhancement) associated with a small wildfire that formed near the border of Fergus and Petroleum counties in central Montana during the afternoon hours on 15 August 2015. With GOES-15 Routine Scan mode “SUB-CONUS” sectors, images were available up to 6 times per hour (at :00, :11, :15, :30, :41, and :45); with GOES-13 in Rapid Scan Operations (RSO) mode, images were available up to 8 times per hour (at :00, :07, :15, :25, :30, :37, :45, and :55). The GOES-14 satellite had been placed into Super Rapid Scan Operations for GOES-R (SRSO-R) mode, providing images at 1-minute intervals to emulate what will be available with mesoscale sectors from the ABI instrument on GOES-R.

For the central Montana wildfire, the first unambiguous signature of a darker black wildfire hot spot began to appear on each satellite after about 1945 UTC, with the first color-enhanced pixels (signifying a shortwave IR brightness temperature of 331.9 K) showing up on the 2026 UTC GOES-14 image. The hottest fire pixel  on the GOES-15 images was 336.5 K at 2130 UTC, while the hottest fire pixel on GOES-13 images was 329.8 K at 2125 UTC. From 2120 to 2130 UTC, the hottest GOES-14 fire pixels were 341.2 K (the saturation temperature of the 3.9 µm detectors on that satellite).

With the finer spatial resolution of the shortwave IR detectors on the polar-orbiting MODIS (1-km) and VIIRS (375-meter) instruments, a fire hot spot was first detected on the 1857 UTC VIIRS image (below).

Terra/Aqua MODIS and Suomi NPP VIIRS 3.7 µm shortwave IR images [click to enlarge]

Terra/Aqua MODIS and Suomi NPP VIIRS 3.7 µm shortwave IR images [click to enlarge]

GOES-14 SRSO-R: Wildfire in southern Washington

August 12th, 2015

GOES-14 visible (0.63 µm) images [click to play MP4 animation]

GOES-14 visible (0.63 µm) images [click to play MP4 animation]

1-minute interval GOES-14 SRSO-R visible (0.63 µm) images (above; click image to play animation) revealed the pulsing nature of the large Cougar Creek wildfire complex burning in southern Washington (not far southwest of Yakima) on 12 August 2015. The MP4 movie file is also available as a very large (128 Mbyte) animated GIF. The second fire blow-up that began around 1700 UTC apparently produced a pyrocumulonimbus cloud, with cloud-top IR Brightness Temperature (BT) values cooling past -40º C. Large amounts of smoke were transported northward and then northeastward away from the fire source region.

During the preceding overnight hours, a comparison of  1003 UTC Suomi  NPP VIIRS shortwave Infrared (3.74 µm), Day/Night Band (0.8 µm), and Infrared (11.45 µm) images (below) showed a very large shortwave IR fire “hot spot” (yellow to red to black pixels), with the large fire glowing very brightly on the Day/Night Band image; the coldest IR BT value of the cloud streaming northward from the fire was -53º C.

Suomi NPP VIIRS shortwave Infrared (3.74 µm), Day/Night Band (0.8 µm), and Infrared (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS shortwave Infrared (3.74 µm), Day/Night Band (0.8 µm), and Infrared (11.45 µm) images [click to enlarge]

Wildfires continue in the interior of Alaska

July 25th, 2015

GOES-15 visible (top) and shortwave IR (bottom) images [click to play animation]

GOES-15 visible (top) and shortwave IR (bottom) images [click to play animation]

Wildfires continued to burn across parts of the interior of Alaska during the 22-25 July 2015 period, as is shown in GOES-15 (GOES-West) 0.63 µm visible channel and 3.9 µm shortwave IR images (above; click to play animation; also available as an MP4 movie file). Also of interest is: (1) the diurnal change of intensity and areal coverage of the fire hot spots (darker black to red pixels on the shortwave IR images), with the fires dying down at night, and (2) the change in direction of smoke transport, from westward on 22 July to eastward on 24 July. The switch in smoke transport direction was the result of changing winds associated with a broad area of low pressure moving across Alaska during that period (surface analyses).

A more detailed view of the fire hot spots was provided by 375-meter resolution (mapped onto a 1-km AWIPS grid) Suomi NPP VIIRS 3.74 µm shortwave IR images (below; click to play animation).

Suomi NPP VIIRS shortwave IR images [click to play animation]

Suomi NPP VIIRS shortwave IR images [click to play animation]

Many of the fires were burning in the general vicinity of the Utopia Creek, Indian Mountain airport (station identifier PAIM); a time series of surface observation from that site (below) showed that visibility was 1 mile or less due to smoke at times on 25 July.

Time series of surface observation from Utopia Creek, Indian Mountain airport [click to enlarge]

Time series of surface observation from Utopia Creek, Indian Mountain airport [click to enlarge]

Daily composites of Suomi NPP VIIRS true-color Red/Green/Blue (RGB) images viewed using the SSEC RealEarth web map server are shown below.

Suomi NPP VIIRS true-color images [click to enlarge]

Suomi NPP VIIRS true-color images [click to enlarge]

Reynolds Creek Fire in Glacier National Park, Montana

July 23rd, 2015

GOES-15 (left) and GOES-13 (right) visible and shorwave IR images [click to play animation]

GOES-15 (left) and GOES-13 (right) visible and shorwave IR images [click to play animation]

Shown above (click image to play animation; also available as an MP4 movie file) is a 4-panel comparison of GOES-15 (GOES-West, left panels) and GOES-13 (GOES-East, right panels) 0.63 µm visible channel images (top) and 3.9 µm shortwave IR images (bottom) which showed the development of the the long smoke plume and the fire hot spot (dark black to red shortwave IR pixels)  associated with the Reynolds Creek Fire (InciWeb | Wildfire Today) which began to burn in the eastern portion of the Glacier National Park in Montana around 2145 UTC or 3:43 pm local time on 21 July 2015. A Red Flag Warning was in effect for the region, due to the combination of warm temperature with low relative humidity, and strong southwesterly winds (gusting to 30 mph at Cut Bank and 29 mph at Browning).

Another sequence of GOES-15 visible channel images is shown below (click image to play animation; also available as a MP4 movie file). Another smaller smoke plume can be seen originating from a fire in far southeastern British Columbia.

GOES-15 visible channel images [click to play animation]

GOES-15 visible channel images [click to play animation]

As it continued to burn into the following night; a comparison of Suomi NPP VIIRS 3.74 µm shortwave IR and 0.8 µm Day/Night Band images at 0958 UTC or 3:58 am local time (below) revealed the hot spot (yellow to red to black pixels) and the bright glow of the fire.

Suomi NPP VIIRS shortwave IR and Day/Night Band images [click to enlarge]

Suomi NPP VIIRS shortwave IR and Day/Night Band images [click to enlarge]

—————————————————————————

Suomi NPP VIIRS 3.74 µm shortwave IR images [click to enlarge]

Suomi NPP VIIRS 3.74 µm shortwave IR images [click to enlarge]

On the following day (22 July), consecutive afternoon (1944 and 2122 UTC) Suomi NPP VIIRS 3.74 µm shortwave IR channel images (above) revealed changes in the shape and areal coverage of the fire hot spot (dark black pixels); the corresponding VIIRS Red/Green/Blue (RGB) true-color images (below) still showed a smoke plume, though is was not as large as that seen on the GOES visible imagery from the previous day.

Suomi NPP VIIRS true-color RGB images

Suomi NPP VIIRS true-color RGB images

—————————————————————————

On 23 July, daytime (1925 and 2104 UTC) Suomi NPP VIIRS 3.74 µm shortwave IR and true-color RGB images (below) continued to display large fire hot spots and a smoke plume drifting toward the east-northeast. The size of the Reynolds Creek Fire was estimated to have increased to 4000 acres.

Suomi NPP VIIRS 3.74 µm shortwave IR and true-color RGB images [click to enlarge]

Suomi NPP VIIRS 3.74 µm shortwave IR and true-color RGB images [click to enlarge]