GOES-14 SRSO-R: pyrocumulus clouds over the Rey Fire in California

August 22nd, 2016

GOES-14 0.63 µm Visible (top), 3.9 µm Shortwave Infrared (middle) and 10.7 µm Infrared Window (bottom) images [click to play MP4 animation]

GOES-14 0.63 µm Visible (top), 3.9 µm Shortwave Infrared (middle) and 10.7 µm Infrared Window (bottom) images [click to play MP4 animation]

The GOES-14 satellite was in SRSO-R mode on 22 August 2016, providing images at 1-minute intervals over the western United States. A 3-panel comparison of Visible (0.63 µm), Shortwave Infrared (3.9 µm) and Infrared Window (10.7 µm) images (above; also available as a large 110 Mbyte animated GIF) showed that there were multiple bursts of pyrocumulus (pyroCu) clouds over the Rey Fire in southern California — while the bulk of the smoke was being transported westward over the offshore waters of the Pacific Ocean, smoke that was ejected to higher altitudes by the pyroCu clouds sent a plume of smoke drifting to the southeast.

The nearby Vandenberg rawinsonde data profile (below) suggests that the pyroCu clouds vertically lofted smoke to an altitude of at least 6.7 km (the 449 mb pressure level), where winds shifted to a northwesterly direction. However, since the pyroCu cloud-top IR brightness temperatures never even made it to -20º C (cyan color enhancement on the bottom panels), the smoke probably wasn’t much higher than the 6.7 km altitude (sounding data).

Vandenberg Air Force Base rawinsonde report [click to enlarge]

Vandenberg Air Force Base rawinsonde report [click to enlarge]

A comparison of Suomi NPP VIIRS true-color and false-color Red/Green/Blue (RGB) images displayed using RealEarth (below) showed the dense plume of smoke drifting westward away from the active fire area (brighter shades of pink on the false-color image), along with a pyroCu cloud over the fire and the early stage of the southeastward-moving smoke plume aloft.

Suomi NPP VIIRS true-color and false-color images [click to enlarge]

Suomi NPP VIIRS true-color and false-color images [click to enlarge]

GOES-14 SRSO-R: wildfire in Idaho

August 21st, 2016

GOES-14 0.63 µm Visible (top), 3.9 µm Shortwave Infrared (middle) and 10.7 µm Infrared Window (bottom) images, with surface reports plotted in yellow [click to play MP4

GOES-14 0.63 µm Visible (top), 3.9 µm Shortwave Infrared (middle) and 10.7 µm Infrared Window (bottom) images, with surface reports plotted in yellow [click to play MP4 animation]

The Pioneer Fire in central Idaho produced another pyroCumulonimbus (pyroCb) cloud on 21 August 2016 (the first was on 19 August). GOES-14 was in SRSO-R mode, and sampled the fire with 1-minute imagery (above; also available as a large 73 Mbyte animated GIF) — a large smoke plume was evident on 0.63 µm Visible images as it moved eastward; large fire hot spots (red pixels) were seen on 3.9 µm Shortwave Infrared images; on 10.7 µm Infrared Window images, the cloud-top IR brightness temperature cooled to -35º C (darker green enhancement) between 2249-2307 UTC as it moved over Stanley Ranger Station (KSNY), not quite reaching the -40º C threshold to be classified as a pyroCb.

However, a 1-km resolution NOAA-19 AVHRR 10.8 µm Infrared Window image (below; courtesy of René Servranckx) revealed a minimum cloud-top IR brightness temperature of -48.3º C (dark green color enhancement).

NOAA-19 AVHRR 0.64 µm visible (top left), 3.7 µm shortwave IR (top right), 10.8 µm IR window (bottom left) and false-color RGB composite image (bottom right) [click to enlarge]

NOAA-19 AVHRR 0.64 µm visible (top left), 3.7 µm shortwave IR (top right), 10.8 µm IR window (bottom left) and false-color RGB composite image (bottom right) [click to enlarge]

A larger-scale comparison of the NOAA-19 AVHRR visible, shortwave infrared and infrared window images is shown below.

NOAA-19 Visible (0.63 µm), Shortwave Infrared (3.7 µm) and Infrared Window (10.8 µm) images [click to enlarge]

NOAA-19 Visible (0.63 µm), Shortwave Infrared (3.7 µm) and Infrared Window (10.8 µm) images [click to enlarge]

===== 23 August Update =====

Suomi NPP VIIRS Shortwave Infrared (3.74 µm), Day/Night Band (0.7 µm) and 11.45-3.74 µm brightness temperature difference images [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm), Day/Night Band (0.7 µm) and 11.45-3.74 µm brightness temperature difference images [click to enlarge]

The Pioneer Fire continued to be very active on 22 August (exceeding 100,000 acres in total burn coverage since its start on 18 July), sending a large amount of smoke northeastward (OMPS Aerosol Index). During the following overnight hours, cold air drainage and the development of a boundary layer temperature inversion acted to trap a good deal of smoke in the Payette River valley to the west/southwest of Stanley KSNT. The active fire hot spots (black to yellow to red pixels) were evident on nighttime (1032 UTC or 4:32 AM local time) images (above) of Suomi NPP VIIRS Shortwave Infrared (3.74 µm) data, while illumination from the Moon (in the Waning Gibbous phase, at 69% of Full) showed the ribbon of smoke trapped in the valley (note that this signal was not due to fog, since it did not show up in the VIIRS 11.45-3.74 µm brightness temperature difference or “fog/stratus product”).

During the subsequent daytime hours of 23 August, 1-minute GOES-14 Visible (0.63 µm) images (below; also available as a large 114 Mbyte animated GIF) showed the gradual ventilation of smoke from the Payette River valley as the temperature inversion eroded and mixing via winds increased.

GOES-14 Visible (0.63 um) images, with plots of hourly surface reports [click to play MP4 animation]

GOES-14 Visible (0.63 um) images, with plots of hourly surface reports [click to play MP4 animation]

GOES-14 SRSO-R: coastal fog/stratus and wildfire activity in the western US

August 17th, 2016

GOES-14 Visible (0.63 µm) images, with hourly surface weather symbols plotted in yellow [click to play MP4 animation]

GOES-14 Visible (0.63 µm) images, with hourly surface weather symbols plotted in yellow [click to play MP4 animation]

GOES-14 remained in SRSO-R mode on 17 August 2016, providing imagery at 1-minute intervals over the western US. Some interesting phenomena observed included the evolution of coastal fog/stratus in areas such as Vancouver Island and Washington/Oregon (above; also available as a large 134 Mbyte animated GIF) and also the Bay Area of California (below; also available as a large 202 Mbyte animated GIF). In the example above, note the diurnal ebb and flow of fog/stratus as it first moved westward out of, and then eastward back into the Strait of Juan de Fuca.; in the example below, it is interesting to note that as the majority of the coastal fog/stratus dissipated as morning heating/mixing progressed, but a narrow finger of fog/stratus remained in the Golden Gate and protruded into San Francisco Bay.

GOES-14 Visible (0.63 µm) images, with hourly plots of surface reports in yellow [click to play MP4 animation]

GOES-14 Visible (0.63 µm) images, with hourly plots of surface reports in yellow [click to play MP4 animation]

In Southern California, one of the larger wildfires burning at the time was the Blue Cut Fire northeast of Los Angeles. During the early morning hours, GOES-14 Visible (0.63 µm) and Shortwave Infrared (3.9 µm) images (below; also available as a large 70 Mbyte animated GIF) revealed the long and narrow smoke plume streaming northeastward; a marked increase in wildfire hot spots (red pixels in the 3.9 µm imagery) was seen after about 17 UTC (10am local time).

GOES-14 0.63 µm Visible (left) and 3.9 µm Shortwave Infrared (right) images, with hourly plots of surface reports in cyan/yellow [click to play MP4 animation]

GOES-14 0.63 µm Visible (left) and 3.9 µm Shortwave Infrared (right) images, with hourly plots of surface reports in cyan/yellow [click to play MP4 animation]

A closer view of GOES-14 Visible (0.63 µm) images (below; also available as a large 127 Mbyte animated GIF) after 18 UTC (11am local time) showed a more well-defined smoke plume re-develop as the wildfire continued to burn with very little perimeter containment. The smoke plume drifted over Victorville, California (KVCV), where the surface visibility briefly dropped to 7 miles at 22 UTC (surface observation plot).

GOES-14 Visible (0.63 µm) images, with county outlines and 4-character airport identifiers [click to play MP4 animation]

GOES-14 Visible (0.63 µm) images, with county outlines and 4-character airport identifiers [click to play MP4 animation]

GOES-14 is operating in SRSO-R Mode

August 9th, 2016

GOES-14 0.62 µm Visible images from 1230 to 1245 UTC on 9 August 2016 [click to play animation]

GOES-14 0.62 µm Visible images from 1230 to 1245 UTC on 9 August 2016 [click to play animation]

GOES-14 is in SRSO-R mode from today through 25 August, providing 1-minute imagery over western portions of the United States. The geographic footprint for 9 August 2016 is shown above (realtime images), and the 15-minute animation contains 13 images, versus the normal 2 that GOES-East or GOES-West would provide during routine scanning. This one-minute imagery is being provided to help prepare for GOES-R; GOES-R is scheduled to launch on 4 November, and when operational it will routinely provide 1-minute imagery in mesoscale sectors.

Shown below is a comparison of GOES-15 (GOES-West), GOES-14 and GOES-13 (GOES-East) Visible images covering the longer 1-hour period of 1230-1330 UTC, focusing on a area of thunderstorms over North Texas. During this time, there are 53 images from GOES-14, compared to 7 images from GOES-15 and 5 images from GOES-13 — note how the evolution of overshooting tops is very easy to follow using the 1-minute GOES-14 imagery.

GOES-15 (left), GOES-14 (center and GOES-13 (right) Visible images [click to play animation]

GOES-15 (left), GOES-14 (center and GOES-13 (right) Visible images [click to play animation]

GOES-14 also monitored the dissipation of fog/low stratus clouds over Nebraska, as seen in the animation below. Additional details can be found here.

GOES-14 Visible (0.62 µm) images [click to play animation]

GOES-14 Visible (0.62 µm) images [click to play animation]

Later in the day, the GOES-14 Visible (0.62 µm) animation below (also available as a large 62 Mbyte animated GIF) showed the development of severe thunderstorms in Montana and Wyoming, which produced several reports of damaging winds and large hail (up to 4.0 inches in diameter). This example is particularly noteworthy due to the fact that the storm was well-sampled by satellite imagery in a region of poor radar coverage (h/t to @DanLindsey77). For additional details on this case, see the VISIT Meteorological Interpretation Blog.

GOES-14 Visible (0.62 µm) images, with surface reports and SPC storm reports of hail (yellow) and wind (cyan) [click to play MP4 animation]

GOES-14 Visible (0.62 µm) images, with surface reports and SPC storm reports of hail (yellow) and wind (cyan) [click to play MP4 animation]

A 3-panel comparison of Visible images from GOES-15 and GOES-13 (available at the routine 15-30 minute interval) and GOES-14 (available at 1-minute intervals) is shown below.

GOES-13 (left), GOES-14 (center) and GOES-13 (right) 0.62 um Visible images [click to play MP4 animation]

GOES-13 (left), GOES-14 (center) and GOES-13 (right) 0.62 um Visible images [click to play MP4 animation]

During the early afternoon hours, the GOES-15 (GOES-West) satellite performed a “North/South Station Keeping maneuver”, during which there was no imaging between 1700-1900 UTC. To help cover for this outage, the GOES-13 (GOES-East) satellite was paced into Full Disk scan mode, which provided only 1 image every 30 minutes. During this time period, the 1-minute imagery from GOES-14 (shown below) was essential to monitor such features as a wildfire burning southeast of Ely, Nevada (station identifier KELY). Two apparent flare-ups of the fire were seen in the areal coverage of the hottest pixels (red) on GOES-14 Shortwave Infrared (3.9 µm) images at 1805 UTC and 1807 UTC, which were not captured by the 30-minute GOES-13 imagery. In fact, the 1745 UTC GOES-13 Shortwave Infrared image suggested that there was a brief reduction in the intensity of the fire (indicated by a lack of red pixels), which was not the case according to the 1-minute GOES-14 imagery.

GOES-15 (left panels), GOES-14 (center panels) and GOES-13 (right panels) 0.62 m Visible and 3.9 µm Shortwave Infrared images [click to play animation]

GOES-15 (left panels), GOES-14 (center panels) and GOES-13 (right panels) 0.62 m Visible (top) and 3.9 µm Shortwave Infrared (bottom) images [click to play animation]