Gatlinburg, Tennessee wildfire

November 29th, 2016

GOES-13 Shortwave Infrared (3.9 µm) images, with METAR surface reports [click to play animation]

GOES-13 Shortwave Infrared (3.9 µm) images, with METAR surface reports [click to play animation]

Wildfires had been burning in the Great Smoky Mountains for a few weeks (see previous blog posts) as extreme to exceptional drought persisted over the region. However, on 28 November 2016 weather conditions became conducive to extreme fire behavior — and this allowed the Chimney Tops 2 Fire south of Gatlinburg, Tennessee to race rapidly northward (fire perimeter map), driven by strong southerly winds gusting to at least 30-40 knots (as were recorded in Knoxville KTYS, located about 25 miles northwest of Gatlinburg). Widespread evacuations were necessary, and at least 13 fatalities were reported.  4-km resolution GOES-13 Shortwave Infrared (3.9 µm) images (above) showed the development of a fire “hot spot” (the cluster of pixels at the center of the images exhibiting a black to yellow color enhancement) during the day, before clouds moved overhead to mask the fire hot spot signature. The warmest infrared brightness temperature seen during this time period was 326.8 K (brighter yellow pixels) on the 1700 UTC image.

Even though cloud cover was increasing, a detailed view of the fire hot spot was provided by an AWIPS II image of 375-meter resolution Suomi NPP VIIRS Shortwave Infrared (3.74 µm) data at 1815 UTC on 28 November (below). An AWIPS I version of this image is available here. Due to the cloudiness, no discernible hot spot appeared on the lower-resolution 1815 UTC GOES-13 Shortwave Infrared image.

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) image [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) image [click to enlarge]

Props to NWS meteorologist Carl Jones for spotting this somewhat unexpected result: the glow of the fire was evident on the following nighttime Suomi NPP VIIRS Day/Night Band (0.7 µm) image, even though there was a thick layer of clouds over the fire itself:


An AWIPS II image comparison of VIIRS Infrared Window (11.45 µm), Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) data at 0816 UTC on 29 November is shown below. Cloud-top Infrared Window brightness temperatures were in the -40 to -55º C range over the fire region (such air temperatures were foundd within the 9.5-10.5 km altitude range on the Nashville sounding when the cloud band was over central Tennessee at 00 UTC). While no fire hot spot signature was evident on the Shortwave Infrared image (due to masking by the clouds), the very distinct bright glow of the fire (which appeared rather large in size, due to scattering of light by the water and ice particles present in the various cloud layers) was seen on the Day/Night Band image. AWIPS I versions of these images are available here.

Suomi NPP VIIRS Infrared Window (11.45 µm), Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Infrared Window (11.45 µm), Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

Additional information is available on the Wildfire Today site (post 1 | post 2 | post 3 | post 4 | post 5).

The Loma fire in California

September 27th, 2016

Suomi NPP VIIRS imagery from the Day/Night Band visible (0.70 µm) and Infrared (3.74 µm) at 0936 UTC on 27 September, and terrain [Click to enlarge]

Suomi NPP VIIRS imagery from the Day/Night Band visible (0.70 µm) and Infrared (3.74 µm) at 0936 UTC on 27 September, and terrain [Click to enlarge]

Between 0900 and 1000 UTC on 27 September (2 AM and 3 AM PDT) Suomi NPP overflew the Loma fire that is burning in the high terrain between Santa Clara and Santa Cruz counties in northern California. (News Article 1; News Article 2) The toggle above shows the glow of the fire in the nighttime visible imagery from the Day/Night Band on the VIIRS instrument. This glow is along the border of the two counties, well removed from the glow of nearby cities. The fire hot spot as detected by the 3.7 micron channel is apparent as well. Smoke from the fire is difficult to detect in this low-light scene (the waxing quarter moon was below the horizon at the time of the image, shedding no light on the scene).

GOES-15 can provide 3.9 µm imagery roughly 4 times per hour (when GOES-R is launched, shortwave infrared imagery will be produced every 5 minutes over the continental United States) allowing a better indication of how the fire is evolving with time. The animation below, from 0500 through 1530 UTC, shows a cooling trend in the warmest pixels (hottest pixels are colored red in the animation, then yellow, then black), which is expected as winds that drive the fire relax at night. There is notable motion in the navigation of this image. GOES-15 is operating with only 1 Star Tracker (vs. the usual 3), resulting in less-precise image navigation.

GOES-15 shortwave infrared (3.9 µm) imagery from 0500 UTC through 1500 UTC on 27 September [Click to animate]

GOES-15 shortwave infrared (3.9 µm) imagery from 0500 UTC through 1500 UTC on 27 September [Click to animate]

Visible Imagery from GOES-15 after sunrise on 27 September shows a long smoke plume moving southeastward from the fire source.

GOES-15 visible (0.62 µm) imagery from 1430 to 1530 UTC on 27 September [Click to enlarge]

GOES-15 visible (0.62 µm) imagery from 1430 to 1530 UTC on 27 September [Click to enlarge]

GOES-14 SRSO-R: pyrocumulus clouds over the Rey Fire in California

August 22nd, 2016

GOES-14 0.63 µm Visible (top), 3.9 µm Shortwave Infrared (middle) and 10.7 µm Infrared Window (bottom) images [click to play MP4 animation]

GOES-14 0.63 µm Visible (top), 3.9 µm Shortwave Infrared (middle) and 10.7 µm Infrared Window (bottom) images [click to play MP4 animation]

The GOES-14 satellite was in SRSO-R mode on 22 August 2016, providing images at 1-minute intervals over the western United States. A 3-panel comparison of Visible (0.63 µm), Shortwave Infrared (3.9 µm) and Infrared Window (10.7 µm) images (above; also available as a large 110 Mbyte animated GIF) showed that there were multiple bursts of pyrocumulus (pyroCu) clouds over the Rey Fire in southern California — while the bulk of the smoke was being transported westward over the offshore waters of the Pacific Ocean, smoke that was ejected to higher altitudes by the pyroCu clouds sent a plume of smoke drifting to the southeast.

The nearby Vandenberg rawinsonde data profile (below) suggests that the pyroCu clouds vertically lofted smoke to an altitude of at least 6.7 km (the 449 mb pressure level), where winds shifted to a northwesterly direction. However, since the pyroCu cloud-top IR brightness temperatures never even made it to -20º C (cyan color enhancement on the bottom panels), the smoke probably wasn’t much higher than the 6.7 km altitude (sounding data).

Vandenberg Air Force Base rawinsonde report [click to enlarge]

Vandenberg Air Force Base rawinsonde report [click to enlarge]

A comparison of Suomi NPP VIIRS true-color and false-color Red/Green/Blue (RGB) images displayed using RealEarth (below) showed the dense plume of smoke drifting westward away from the active fire area (brighter shades of pink on the false-color image), along with a pyroCu cloud over the fire and the early stage of the southeastward-moving smoke plume aloft.

Suomi NPP VIIRS true-color and false-color images [click to enlarge]

Suomi NPP VIIRS true-color and false-color images [click to enlarge]

GOES-14 SRSO-R: wildfire in Idaho

August 21st, 2016

GOES-14 0.63 µm Visible (top), 3.9 µm Shortwave Infrared (middle) and 10.7 µm Infrared Window (bottom) images, with surface reports plotted in yellow [click to play MP4

GOES-14 0.63 µm Visible (top), 3.9 µm Shortwave Infrared (middle) and 10.7 µm Infrared Window (bottom) images, with surface reports plotted in yellow [click to play MP4 animation]

The Pioneer Fire in central Idaho produced another pyroCumulonimbus (pyroCb) cloud on 21 August 2016 (the first was on 19 August). GOES-14 was in SRSO-R mode, and sampled the fire with 1-minute imagery (above; also available as a large 73 Mbyte animated GIF) — a large smoke plume was evident on 0.63 µm Visible images as it moved eastward; large fire hot spots (red pixels) were seen on 3.9 µm Shortwave Infrared images; on 10.7 µm Infrared Window images, the cloud-top IR brightness temperature cooled to -35º C (darker green enhancement) between 2249-2307 UTC as it moved over Stanley Ranger Station (KSNY), not quite reaching the -40º C threshold to be classified as a pyroCb.

However, a 1-km resolution NOAA-19 AVHRR 10.8 µm Infrared Window image (below; courtesy of René Servranckx) revealed a minimum cloud-top IR brightness temperature of -48.3º C (dark green color enhancement).

NOAA-19 AVHRR 0.64 µm visible (top left), 3.7 µm shortwave IR (top right), 10.8 µm IR window (bottom left) and false-color RGB composite image (bottom right) [click to enlarge]

NOAA-19 AVHRR 0.64 µm visible (top left), 3.7 µm shortwave IR (top right), 10.8 µm IR window (bottom left) and false-color RGB composite image (bottom right) [click to enlarge]

A larger-scale comparison of the NOAA-19 AVHRR visible, shortwave infrared and infrared window images is shown below.

NOAA-19 Visible (0.63 µm), Shortwave Infrared (3.7 µm) and Infrared Window (10.8 µm) images [click to enlarge]

NOAA-19 Visible (0.63 µm), Shortwave Infrared (3.7 µm) and Infrared Window (10.8 µm) images [click to enlarge]

===== 23 August Update =====

Suomi NPP VIIRS Shortwave Infrared (3.74 µm), Day/Night Band (0.7 µm) and 11.45-3.74 µm brightness temperature difference images [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm), Day/Night Band (0.7 µm) and 11.45-3.74 µm brightness temperature difference images [click to enlarge]

The Pioneer Fire continued to be very active on 22 August (exceeding 100,000 acres in total burn coverage since its start on 18 July), sending a large amount of smoke northeastward (OMPS Aerosol Index). During the following overnight hours, cold air drainage and the development of a boundary layer temperature inversion acted to trap a good deal of smoke in the Payette River valley to the west/southwest of Stanley KSNT. The active fire hot spots (black to yellow to red pixels) were evident on nighttime (1032 UTC or 4:32 AM local time) images (above) of Suomi NPP VIIRS Shortwave Infrared (3.74 µm) data, while illumination from the Moon (in the Waning Gibbous phase, at 69% of Full) showed the ribbon of smoke trapped in the valley (note that this signal was not due to fog, since it did not show up in the VIIRS 11.45-3.74 µm brightness temperature difference or “fog/stratus product”).

During the subsequent daytime hours of 23 August, 1-minute GOES-14 Visible (0.63 µm) images (below; also available as a large 114 Mbyte animated GIF) showed the gradual ventilation of smoke from the Payette River valley as the temperature inversion eroded and mixing via winds increased.

GOES-14 Visible (0.63 um) images, with plots of hourly surface reports [click to play MP4 animation]

GOES-14 Visible (0.63 um) images, with plots of hourly surface reports [click to play MP4 animation]