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“Time works changes, brings into existence new conditions and purposes. Therefore a 

principle, to be vital, must be capable of wider application than the mischief which gave it birth.” 

 

Joseph McKenna, Associate Justice of the Supreme Court of the United States 

Weems vs. United States, 217 U.S. 349 (1910) 

 

 

Abstract 
 
Of all of the standard meteorological parameters collected and observed daily, sky cover is not 

only one of the most complex, but the one that is fairly ambiguously defined and difficult to 

quantify.  Despite that, the implications of how cloud fraction and sky cover are understood not 

only impact daily weather forecasts, but also present challenges to assessing the state of the 

earth’s climate system.  Part of the reason for this is the lack of observational methods for 

verifying the skill of clouds represented and parameterized in numerical models. 

While human observers record sky cover as part of routine duties, the spatial coverage of 

such observations in the United States is relatively sparse.  There is greater spatial coverage of 

automated observations, and essentially complete coverage from geostationary weather satellites 

that observe the Americas.  A good analysis of sky cover reconciles differences between manual 

observations, automated observations, and satellite observations, through an algorithm that 

accounts for the strengths and weaknesses of each dataset.  This work describes the decision 

structure for trusting and weighting these similar observations.  Some of the issues addressed 

include:  human and instrument error resulting from approximations and estimations, a 

deficiency in high cloud detectability using surface-based ceilometers, poorly resolved low cloud 
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using infrared channels on space-based radiometers during overnight hours, and decreased 

confidence in satellite-detected cloud during stray light periods. 

Using the blended sky cover analysis as the best representation of cloudiness, it is 

possible to compare the analysis to numerical model fields in order to assess the performance of 

the model and the parameterizations therein, as well as confirm or uncover additional 

relationships between sky cover and pertinent fields using an optimization methodology.  The 

optimizer minimizes an affine expression of adjusted fields to the “truth” sky cover analysis.  

Results include discussion about how the blended sky cover analysis correlates with the cloud 

ice, cloud water, rain, snow, and other analysis fields from the High-Resolution Rapid Refresh 

(HRRR).  The intent is to suggest a reasonable operational and scientific definition for sky cover 

and demonstrate an observational method that can bring consistency to analyses and forecasts of 

sky cover. 
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Executive Summary 
There is the lack of an observational method through which to verify the behavior of 

cloud parameterizations in climate and weather models, which are useful in examining cloud 

feedbacks.  The proposed solution to this problem is a sky cover approach.  Sky cover is an hour-

averaged quantity of cloud coverage within the celestial dome.  The celestial dome is the amount 

of sky, from horizon to horizon, visible to a human or instrument observer at a single point.  

Pursuant to the problem, this project achieves the following: 

• It devises a blended sky cover analysis that incorporates the advantageous properties of 

surface observations of sky cover and geostationary satellite cloud products. 

• It defines a framework for optimizing the blended analysis based on the current near-term 

human-produced forecasts from the National Digital Forecast Database (NDFD). 

• It constructs an affine expression of High-Resolution Rapid Refresh (HRRR) relative 

humidity, mixing ratio, and vorticity analysis fields with adjustable coefficients and 

scalars that is optimized to decrease the absolute error compared to the “truth” analysis. 

The primary conclusions are: 

• The combination of surface observations and the satellite sky cover product improves the 

detection of nocturnal low cloud and general high cloud compared to a single source. 

• Relative humidity and cloud water mixing ratio are closely correlated with sky cover, 

particularly in the lowest levels of the troposphere. 

• The linear optimization approach produces an optimal sky cover product with decreased 

mean error, mean absolute error, and root-mean-square error when validated against the 

NDFD one-hour forecast, compared to the current operational HRRR output. 
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1.    Introduction 

Clouds are a fundamental part of the earth system.  Their impacts on the earth are far-reaching, 

with both large and small implications for humans.  Clouds, cloud evolution, and cloud 

feedbacks are correlated with radiation, latent heating, temperature, moisture, precipitation 

processes and efficiency, and aerosols.  They are parameterized in climate and short-term 

weather prediction models.  Cloudiness impacts global industries, such as air travel and the 

renewable energy sector.  And it even has an impact on the outcome of professional baseball 

games (Kent and Sheridan 2011). 

Despite the implications on everything from a daily local weather forecast to a global 

climate prediction, and multiple observing platforms capable of sensing or detecting cloud, 

including geostationary satellites, polar-orbiting satellites, and a surface-based observation 

network of humans and automated instrumentation, the analysis and forecast of cloud fraction 

and other cloud-related quantities remains a quandary in the atmospheric sciences (Young 1967; 

Wylie and Menzel 1989).  The National Weather Service (NWS) has had a long-standing 

requirement to forecast sky cover as part of the weather information that is supplied to the public 

routinely.  However, meteorologists have long complained about the lack of good analyses and 

forecasts from the numerical weather prediction (NWP) models for cloud fraction and sky cover, 

with Gerth (2011) demonstrating significant error in cloud cover forecasts from experimental 

regional numerical model runs adequately initialized, even within 12 hours.  The problem is 

compounded as a result of an unclear and inconsistent operational and scientific definition for 

sky cover.  As a result, consistent observations, forecasts, and scientific understanding of sky 

cover remain elusive despite progress elsewhere in the field. 
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a. Early history 

Cloud cover was a topic of interest after the first satellites launched, as evinced by work 

from Arking in 1964.  Malberg (1973) was among the first to compare satellite cloud 

observations with those from the surface.  Malberg used the Environmental Science Services 

Administration (ESSA) 8 satellite to compare imagery of the Europe and North Atlantic area 

between December 1967 and November 1970.  The United States Air Force and National 

Environmental Satellite Service produced a global atlas of relative cloud cover using data 

collected from satellites between 1967 and 1970. 

Early studies of cloud cover from satellites faced a number of challenges.  First, 

techniques had not been developed to discriminate between cloud and surface features with a 

high albedo, such as sand and snow.  Second, the satellite imagery of the day offered less spatial 

and temporal resolution than is available today.  Combined with better geolocation capabilities 

afforded from satellite stabilization, as well as multiple spectral bands on modern radiometers, 

the current state of the science in this area has improved over the preceding several decades, 

though issues remain. 

b. Challenges linger today 

Sky cover presents a different formulation for considering cloudiness compared to 

traditional definitions.  The greatest strength in using sky cover is that it is an observable 

quantity and much more characteristic of the surrounding atmosphere for validation purposes 

than a single cloud observation, or observation at a fixed point.  However, this is different than 

the point-based output of cloud fraction from current NWP methods.  Thus, the science is well 

served in assessing how weather and climate models handle clouds and their coverage.  Due to 
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the complex nature of cloud development and decay, numerical models provide one of the only 

ways to understand cloud processes and how they impact the rest of the atmosphere.  However, 

global circulation and NWP models are weakened through the use of cloud parameterizations.  

Cloud parameterizations are built on assumptions and empirical formulations that are difficult to 

evaluate (Stephens 2005).  The science currently lacks observational methods for assessing the 

performance of cloud parameterizations. 

Accordingly, the lack of a single analysis to represent observed cloudiness is the 

motivating factor behind this work.  The limited knowledge behind what quantities and how the 

distribution of those quantities in the atmosphere contribute to cloudiness is the motivating factor 

for the methodology.  This work will demonstrate cases in which single-source observation 

platforms fail to make the proper cloud detections.  Furthermore, as a consequence of the limited 

number of spectral bands on the current geostationary satellite imagers, and radiative properties 

of certain types of clouds, current satellite-based detection methods for clouds can sometimes fail 

to adequately discriminate cloud from the surface. 

It is hypothesized that a reasonable diagnostic formulation of cloud cover, as 

aforementioned, can be calculated from prognostic cloud and moisture variables, and potentially 

other atmospheric variables which are related to cloudiness, and that such a formulation can 

consistently perform better than traditional cloud schemes used in operational weather models 

today.  Cloud schemes in such models fit into one of three different categories.  The older, 

simplest schemes are diagnostic schemes, where cloud quantities are diagnosed from other 

model variables during model execution or during post-processing.  In comparison, prognostic 

schemes are those where cloud cover, water vapor, and condensate variables are interconnected, 

dependent, and advanced/calculated during model execution.  Finally, hybrid schemes are those 
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where condensate variables are prognostic, but cloud cover is diagnostic.  The Global Forecast 

System (GFS) and Weather Research and Forecast (WRF) models employ hybrid schemes. 

While relative humidity schemes – those diagnostic schemes that relate cloud cover to 

relative humidity – are described subsequently, there is also significant use of statistical 

approaches, where a probability density function (PDF) is specified for the total water within a 

numerical model grid cell.  Most of the PDFs are unimodal, though the shape and skewness of 

the PDFs vary by approach (Tompkins 2005).  Regardless of the approach and scheme, the 

common assumption is that the numerical model allows cloud in a subsaturated grid cells, 

whereas, in nature, cloud forms in a supersaturated environment.  As such, there is either a 

critical relative humidity threshold or assumption about the subgrid-scale temperature and/or 

humidity behavior that is a central component of the approach/scheme in all implementations. 

c. Goals 

There is the lack of an observational method through which to verify the behavior of 

cloud parameterizations in climate and weather models, which are useful in examining cloud 

feedbacks.  There are two goals to solving this problem.  The first goal is to produce a sky cover 

analysis that is representative of current conditions and suitable for use as validation.  Thus, the 

second goal is to determine the existence of and quantify the relationship between sky cover as 

purported by the analysis and related atmospheric quantities in a cloud-resolving NWP model. 

d. Definitions 

There are two definitions of sky cover.  The Federal Meteorological Handbook No. 1 

defines sky cover as “the amount of the celestial dome hidden by clouds and/or obscurations” 

(“Federal Meteorological Handbook No. 1, Surface Weather Observations and Reports” 2005).  
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The NWS defines sky cover as the “amount of opaque clouds … (in percent) covering the sky” 

over a one-hour period (“National Weather Service Instruction 10-201, National Digital Forecast 

Database and Local Database Description and Specifications” 2012).  Sky cover is similar to 

cloud cover, which is traditionally defined as the fraction of entire sky visible to an observer 

standing at a point.  The entire sky bounded by the horizon is known as the celestial dome.  For 

the purposes of this research, sky cover is a time-average of cloud cover (within the celestial 

dome) over a one-hour window. 

In contrast, cloud fraction is defined as the amount of cloud covering a sampled area.  In 

the case of a satellite sensor, the cloud fraction for a given pixel is the fraction of cloudiness 

within the pixel or amongst a group of adjacent pixels.  Since the satellite is unable to resolve 

sub-pixel cloudiness, the term effective cloud amount (or effective cloud emissivity, in some 

circles) is employed to describe the product of the emissivity of the cloud and the cloud fraction. 

Unfortunately, such quantities are not routinely output from NWP models. 

e. Types of observations and analyses 

A central component to the subsequent verification and improvement of NWP model 

output is developing an adequate analysis of sky cover.  Developing such an analysis requires the 

use of both in-situ and remote observations.  For the purposes of such an analysis, an hour or less 

is the preferred frequency of observation.  Two main sources of sky cover observations meet the 

requisite criteria:  surface stations and geostationary satellite radiometers. 

SURFACE OBSERVATIONS 

In the United States, human weather observers at surface observing stations routinely 

make cloud observations over the celestial dome.  Most surface stations are near or collocated at 
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airports or military facilities.  At sites with a staffed human observer, the observer typically has a 

ceilometer available to help assess the ceiling.  In some instances, there is evidence that the 

human observer trusts the observing equipment without modification.  At some observing 

locations, human observers are not available at all hours because there is no need for a “manned” 

observation once commercial air traffic has ceased for the evening.  For stations with observers 

overnight, there are additional challenges with overnight cloud observations, particularly high 

cloud, due to the lack of natural light.  This is a bias difficult to correct because diurnal processes 

in the atmosphere can lead to changes in cloud cover between day and night.  There are also a 

significant number of stations automated to produce an observation in the absence of a human 

observer. 

Unfortunately, examples of poor observations are readily available.  A comparison of 

surface observations to satellite imagery, as shown in Schreiner et al. (1993), reveals that the 

most common error of cloud cover occurs with areas of high cloud, which automated observing 

systems do not report, and inattentive human observers occasionally fail to correct.  Human 

observations are also imprecise.  In addition, observations are only required once per hour, and 

cloud reporting generally consists of one of five classifications.  Meteorological software 

packages, such as the GEneral Meteorology PAcKage (GEMPAK), converts the classification 

code to a sky cover amount, in units of percent, where clear is 0% sky cover, a few clouds is 

25% sky cover, scattered cloudiness is 40% sky cover, broken cloudiness is 75% sky cover, and 

overcast or obscured is 100% sky cover (DesJardins et al. 1991).  As such, surface observations 

often sky cover lack precision.  In addition, short-term changes in cloud cover can be missed. 

Surface observations are most reliable when reporting low, overcast cloud.  The 

ceilometers used at surface sites maintain a fixed position.  Consequently, the reported cloud 
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amount is a result of a 30-minute temporal average of cloud, double-weighted within the ten 

minutes immediately prior to the observation time (“Sky Condition Algorithm for Vaisala 

Ceilometer’s” 2010; “Sky Condition” 2013).  Currently, ceilometers are programmed to only 

report cloud coverage and heights detected within 12 kft (3700 m) above the instrument (“Sky 

Condition” 2013), which is approximately 600 hPa.  A skilled human observer has the option to 

augment the ceilometer height report in the final statement. 

SATELLITE OBSERVATIONS 

A complementary source of observations is geostationary satellite imagery.  The United 

States operates a constellation of two geostationary satellites, which collectively provide 

coverage of the country with a scan approximately every 15 minutes, occasionally more during 

periods of severe weather.  Geostationary weather satellite imager scan strategies enable the 

detection of changes in cloud cover with a greater temporal frequency than surface observations, 

and are not subject to human error or subjectivity.  Such imagers also are able to collect 

observations over a large spatial area.  Since a weather satellite observes the atmosphere from 

above, a number of issues arise with cloud detection from satellite and comparing those remote 

observations to surface observations (Malberg 1973; Schreiner et al. 1993).  First, satellites do 

resolve discrete clouds smaller than the scanning resolution of the sensor.  In the case of the 

current Geostationary Operational Environmental Satellite (GOES), the resolution, at nadir, of 

the infrared channels is 4 km.  Issues also arise when thin high cloud is above low cloud, and 

when low cloud exhibits similar properties to the surface temperature and emissivity it overlays. 

The easiest method for distinguishing a cloud in the terrestrial infrared window from the 

surrounding atmosphere is to locate a spatial contrast in either the emissivity or the emitting 
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temperature.  Fortunately, a general decrease of the temperature of the troposphere with height 

makes determining middle and upper tropospheric cloud relatively easy, particularly in the mid-

latitudes.  Cloud existing near the surface or within or beneath an inversion, with a warm, 

terrestrial temperature, is more difficult to detect; also challenging are ice clouds over snow and 

ice fields. 

REAL-TIME MESOSCALE ANALYSIS 

The current cloud fraction analysis in the operational Real-Time Mesoscale Analysis 

(RTMA) comes from a GOES sounder cloud composite available once per hour (De Pondeca et 

al. 2011).  Information from the GOES sounder also helps to produce the operational satellite 

cloud product (Schreiner, Schmit, and Aune 2002), which is widely used today to report current 

sky conditions over the National Oceanic and Atmospheric Administration (NOAA) weather 

radio.  Since the next generation of GOES satellites, the GOES-R series (Schmit et al. 2005), is 

not expected to have a sounder (Schmit et al. 2008), a new analysis based on the imager bands is 

required.  In addition, the operational satellite cloud product is site-based; it is not gridded. 

NATIONAL DIGITAL FORECAST DATABASE 

The NWS has an operational requirement to forecast sky cover.  This is done through the 

National Digital Forecast Database (NDFD).  The NDFD is a gridded forecast for most portions 

of the United States.  Though the input for the NDFD comes from NWP models, operational 

meteorologists within the NWS routinely monitor the quality of the current conditions and 

forecast, and make adjustments as necessary (Glahn and Ruth 2003).  Unfortunately, the NDFD 

struggles from accuracy issues and potentially from the forecast process that results from offices 
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insufficiently collaborating and failing to produce a consistent forecast across political 

boundaries.  Sharp non-meteorological boundaries are evident.  When compared to the clear 

areas identified with GOES, the problem is even more substantial.  A number of forecasters 

overpredict cloud in clear or nearly clear areas as assessed from satellite imagery. 

MEAN VALUE 

Depending on the observation type or related sky cover analysis or product, the mean 

value differs substantially, typically 15% or more.  A portion of the difficulty in establishing a 

sky cover parameter of record is having a benchmark to compare it against.  In this case, an exact 

validating analysis that matches in time and space does not exist. 

One complication resulting from determining a mean value for surface observation sky 

cover reports is that surface stations are not distributed uniformly across the domain, nor is their 

reporting interval always standard.  Consequently, cloudy conditions across one portion of the 

grid with a high number of surface observations could bias the mean away from a large area of 

clear skies with relatively few surface observations.  In many situations, however, the mean 

value of the surface observations is significantly less than the satellite sky cover mean.  This 

results from the surface observation network’s limited detectability of high cloud, and possibly 

the correspondence between cloud classifications and sky cover used in this study. 

2.    Relationships 

Beyond the different standalone analyses of sky cover based on single sources, NWP models 

also output an analysis and forecast of cloud cover.  However, cloud cover output from a NWP 

model is particularly unique because of its relationship to one or more prognostic model 
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variables, as well as certain approximations.  Previous studies have investigated relationships 

between cloud cover and other atmospheric quantities. 

a. From literature 

Accurately representing cloudiness in output from NWP models is an ongoing issue that 

originates from the early days of NWP science (Sims 1973).  In 1960, Smagorinsky suggested an 

affine formation between relative humidity and cloud fraction.  Since that time, other empirical 

formulations of cloud fraction have appeared in the literature, generally expressed as a function 

of relative humidity (Slingo 1980; Williamson et al. 1987; Walcek 1994; Xu and Randall 1996; 

Teixeira 2001).  The current computation for cloud fraction output from operational NWP 

models, including the WRF model, is the Xu and Randall (1996) scheme, which defines cloud 

fraction, !, in terms of condensate mixing ratio and relative humidity, !": 

! = !!![1− exp
−!!!!

1− !" !!" ! ],      if  RH<1

                                                                                                                        1,      if  RH≥1
 

where !! is the large-scale liquid water mixing ratio and !!" is the saturation water vapor mixing 

ratio.  The empirical values of !, !!, and ! are 0.25, 100, and 0.49, respectively. 

Diagnostic schemes predate prognostic schemes.  A prognostic equation for cloud 

fraction was first proposed in Tiedtke (1993).  The Tiedtke (1993) scheme contained a 

formulation of the time tendency of cloud cover controlled by source terms representing 

increased cloudiness via convection, boundary-layer turbulence, and stratiform condensation 

processes; and a sink term for the decrease in cloudiness as a result of evaporation. 

Beyond what is known about cloud formation and sustenance at a very basic level, 

previous studies have examined relationships between atmospheric quantities and clouds.  There 
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are two general approaches.  One approach is to consider those quantities that are correlated with 

cloud and cloud fraction but the degree to which is unclear.  This includes the class of 

condensate variables and potentially other terms in the total water budget by extension.  For 

example, in order to form a cloud, water is extracted from vapor form in the surrounding 

atmosphere into a liquid (including the supercooled state) or ice form.  Or, the converse, in order 

for a cloud to disperse, water is extracted from liquid or ice state back into the atmosphere as 

vapor.  The other approach is to consider those quantities that portend, support, or hinder clouds.  

This includes a number of kinematic and stability quantities.  While some of these quantities, 

such as vertical motion, may have some interaction with cloud and moisture quantities, through 

diabatic heating for example, their relationship to cloudiness depends on how the atmosphere has 

been preconditioned to the development or decay of cloudiness.  Quantities that can force 

cloudiness but require a source of water vapor are considered secondary quantities. 

While it is possible that secondary quantities are important to understanding the cloud 

lifecycle, the formulation presented here makes it difficult to gauge the impact of those 

secondary quantities, particularly kinematic quantities and related parameters that depend on 

atmospheric motion.  This is in part because of some complications with using NWP models.  

For example, NWP models require the use of diffusion terms to dampen numerical noise that 

results from time-stepping and other interfaces within the model.  In addition, the predictive skill 

of the model for some quantities, those adjusted by a single thunderstorm, for instance, is not 

ideal for an exercise such as this.  This is an inherent problem with using cloud-resolving models 

and small grid spacing where the initial conditions are not on the same scale.  Other quantities 

are impacted, some strongly so, through the use of parameterizations.  With large-scale models, 

there is previous evidence that cloudiness decreased with an increase in horizontal spatial 
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resolution (Tiedtke 1993).  However, Tiedtke (1993) did not find a drastic dependency on 

horizontal resolution using his proposed prognostic cloud fraction scheme. 

Zhang (2003) investigated hourly satellite cloud data between June and July 1997 to 

assess the relationship of cloud properties to atmospheric quantities as resolved in the Rapid 

Update Cycle (RUC) model.  Zhang (2003) found correlations between high cloud and upward 

vertical motion as well as low cloud and subsidence, though the results are from the United 

States Central Plains during the summer.  In addition, while, consistent with other studies 

(Smagorinsky 1960; Williamson et al. 1987), Zhang (2003) found evidence of a clear 

relationship between relative humidity and cloudiness, he did not find a threshold value for 

cloudiness that is sometimes found in other studies on this topic.  For example, Smith (1990) 

developed a diagnostic cloud fraction formulation with two relative humidity thresholds, 

depending on the vertical location in the troposphere.  Even Tiedtke (1993) used a humidity 

threshold as a regulator for forming clouds.  This confirms previous work that suggests for a high 

relative humidity value, there is not necessarily a trend toward high cloud fraction, nor is there a 

threshold of relative humidity where cloud is consistently absent (Teixeira 2001). 

b. Approximations 

For the mixing ratio terms, Wood and Field (2000) proposed a differential equation in 

which the change of cloud fraction with respect to cloud mixing ratio is related to the cloud 

fraction and the saturation mixing ratio.  An integration of this differential equation with the 

proper bounds, namely that cloud fraction is zero when there is no cloud mixing ratio, provides 

an equation of the form ! ! = 1− !!!" where !(!) is the cloud fraction and ! is a constant 

related to saturation mixing ratio and fit to observational data. 
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In developing optimal sky cover output from NWP output, it is important to provide for 

affine relationships between sky cover and the condensate terms.  Though the exponential 

function is nonlinear, the Maclaurin series for the function !!! is 

!!! =
−! !

!!

!

!!!

= 1− ! +
!!

2! −
!!

3! +⋯ 

where 0 ≤ ! ≤ 1 for this application.  If higher order terms, where ! ≥ 2, are disregarded, 

! ! = 1− !! can be reduced to ! ! ≈ 1− 1− ! = !, which is linear.  Such an adjustment 

is possible because significant error between the approximated value and the actual value arises 

for ! > 1, where the value of ! becomes much larger than the approximated function.  Since 

0 ≤ ! ≤ 1, it is not necessary to define and/or center a Taylor series at a higher ! value.  

Furthermore, doing so would introduce nonlinear terms. 

The approximation of the additive property of cloud fraction between levels is considered 

next.  The exponential relationship between cloud cover and mixing ratio assumes the same form 

as absorbance absent scattering, 1− !, where transmittance ! = !!!, and ! is the optical depth.  

The Beer-Lambert law, or Beer’s law, provides that there is a linear relationship between 

absorbance and concentration of the absorber.  Though clouds have scattering properties, it is 

conceptually viable that the cloud fraction within a column would be linearly proportional to the 

absorbance of light through the column1.  The transmittance through two adjacent atmospheric 

layers is the product of the transmittance through each layer individually.  The geometric 

argument for cloud fraction is construed similarly.  The clear sky through an atmospheric column 

is the product of the clear sky fraction for the layers within the column, such that 

                                                
1 However, for this application, the light source would be at the surface, and clouds could only absorb or transmit. 
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!! = 1− !! =    1− !!
!

!!!

= !!
!

!!!

 

for ! ∈ ! layers in the column, where !! is the clear sky fraction for layer i or the entire column 

for !!, and !! is the cloud fraction for layer i or the entire column for !!. 

Since optical depth is a function of the extinction coefficient, the extinction coefficient is 

proportional to mixing ratio, and given there exists a direct relationship between absorbance and 

cloud fraction, it is possible to define the cloud cover as the sum of adjusted relative humidity 

values and adjusted mixing ratio values within a column.  Therefore, the sum of adjusted mixing 

ratio quantities is approximated using the same Maclaurin series of !!! as previously, such that 

the total cloud fraction for a given column ! = !!!   ≈ 1− 1− ! = ! where ! = !!(!) for 

all !, and ! defined as the column optical depth.  Based on the aforementioned assumptions, this 

is a sum of ! affine functions !!(!), and consequently, is also affine.  These approximations make 

it easier to correlate a blended analysis with multiple output fields from a NWP model. 

3.    Creating a blended analysis 

In this project, there are several types of new satellite analyses produced.  Generally, each is 

derived from the one previous.  One of the primary bands for cloud detection is the infrared 

window, though other bands can and do play an important role in discriminating clouds from 

atmospheric and terrestrial features.  An example of the infrared window is found in Figure 1.  

All of the subsequent figures in this section are valid at approximately, or within the one-hour 

window after, 11 UTC on 20 October 2013.  The original product input is the satellite effective 

cloud amount (ECA) output from Andrew Heidinger (Heidinger 2011a), an example of which is 

shown in Figure 2.  Once a cloud is identified, radiative techniques exist to compute the cloud 
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top pressure (CTP), shown in Figure 3, assessed from spectral imagery collected with the 

satellite radiometer (Heidinger 2011b; Heidinger and Pavolonis 2009).  The CTP is useful for 

determining the height of the cloud and whether it is detectable with surface-based automated 

instrumentation.  Each point of the ECA product is then averaged over a point-centered 11 by 11 

box representing the celestial dome to produce the celestial dome effective cloud amount 

(CDECA).  The CDECA also includes corrections which increase the similarity of the product to 

sky cover.  These corrections are noted in Appendix A, and an example of the CDECA product 

is found in Figure 4.  The most notable correction involves updating the average emissivity when 

the ECA is less than 50% but the cloud fraction and cloud probability are sufficiently high, and 

the cloud phase consists of ice.  The CDECA products for multiple times within a one-hour 

window are then averaged to produce a satellite sky cover product, shown in Figure 5.  A 

celestial dome cloud top pressure (CDCTP) product2 is also created for use in conjunction with 

the CDECA product, which contains the mean of the CTPs within a point-centered 11 by 11 box 

for corresponding non-clear points in the ECA where each contributing point of CTP is weighted 

by the ECA such that, for a given point, 

!"!#$ =
   !"#×!"#!"!!!"#$%

!"#!"!!!"#$%
. 

All satellite cloud products are computed independently at each scan time prior to 

combination with multiple times and multiple satellites.  There is a blend zone between GOES-

East and GOES-West between 100° West and 105° West longitude where product values from 

both satellites are averaged.  Products are averaged within a one-hour window and all products 

are given a valid time at the beginning of window in which the average begins. 

                                                
2 Anthony Schreiner developed the methodology for calculating the CDCTP product. 
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a. Gridding surface observations 

A component of the project, pursuant to the problem at hand, is to combine the satellite 

sky cover product and surface observations through leveraging the strengths of each, and 

producing a single analysis, herein referred to as the blended sky cover analysis.  The intent is to 

ameliorate the weaknesses compared to a single platform analysis.  The first step in the process 

is to create an analysis of sky cover from surface observations.  For this, all of the observations 

within a one-hour window are analyzed to a 10 km Lambert Conformal grid, as shown in Figure 

6.  Gridding the surface observations and creating a spatially contiguous grid of surface reports is 

a multi-step process.  For the continental United States domain, the initial step is to bin all of the 

observations from within a one-hour window to the nearest grid cell.  This includes multiple 

observations from the same station or observations from adjacent stations residing within the 

same grid cell.  Both automated and manual observations are used. 

The subsequent step is to fill the portions of the grid without a resident surface station.  

For a candidate grid point, a search radius is expanded to adjacent grid points until a match is 

found.  When a match is found, the observation is checked against the satellite sky cover product 

value at that point.  If the grid cell with a non-missing value and corresponding satellite sky 

cover product value match within a pre-established tolerance, 25% coverage, and the satellite 

observation is clear at the candidate point, the pixel is considered clear at this stage.  Otherwise, 

the candidate point assumes the non-missing sky cover amount of the closest point with a 

resident observation.  If there are two or more points found of equal distance to the candidate 

point, the mean of those closest points is taken. 

For grid cells without a resident observation, another weighted average is performed 

based upon the distance to the nearest grid cell with a resident observation, depending on the 
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characteristics of the sky cover amount at that grid cell.  The weighted average covers a broader 

area for those points that are further away from an observing station.  The square area of 

weighted points is centered on each eligible point and has a side edge equal to twice the distance 

to the closest surface observation, less one.  The center point and the edge points of each 

concentric square are weighted the same.  Therefore, for the progressively larger interior squares, 

less weight is given to each edge point.  Each point is weighted except when the center point, 

containing the value of the nearest surface observation consistent with the aforementioned logic, 

is valued at 0% coverage, the satellite sky cover product exceeds the tolerance for clear skies, 5% 

coverage, and the satellite CDCTP is above 750 hPa, or more than half of the observations in the 

box match these criteria.  In such cases, a sky cover amount of 0% is assigned.  The CTP 

requirement helps to prevent false satellite cloud detections from impacting subsequent analyses.  

Such potential cases are discussed subsequently. 

b. Basic methodology 

The essence of the methodology behind producing the blended analysis hinges on the 

need to preserve not only the location of cloud edges, but also the magnitude of the sky cover 

gradient across them.  This is particularly important in areas under and near a stratocumulus 

deck, for example, which occurs frequently on the Pacific Coast of the United States.  

Furthermore, the non-clear surface observation sky cover reports are the most important, since 

they are the best representation of truth.  The basic logic behind the blended sky cover analysis is 

as follows for a given grid cell: 

• Where the observation of sky cover from the surface is clear, with a sky cover amount of 

less than 5%, the blended analysis will assume the value from the satellite sky cover 
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product depending on the corresponding satellite CTP or CDCTP.  If the CDCTP value is 

sufficiently high (low cloud), then the satellite cloud detection is considered false. 

• Where the aforementioned case does not apply and the value of the nearest surface 

observation of sky cover is greater than that of the satellite sky cover product, the sky 

cover value of the surface observation is used in the blended analysis. 

• In all other instances where both observations are available, a weighted average is 

employed, based on the proximity to the nearest observing station. 

• If one observation type is available for a point, but not the other, the available 

observation is used in the blended analysis.  For example, over ocean, there are no nearby 

surface observations.  In such cases, the analysis uses solely the value from the satellite 

sky cover product. 

c. Low cloud 

In the case of geostationary satellites, detectability of low cloud is the most difficult, 

particularly in the seasons of spring and fall.  This is evident in the case from 11 UTC on 20 

October 2013, where morning fog in the Seattle, Washington, metropolitan area, evaded 

detection from satellite due to an emissivity and brightness temperature similar to that of the 

background land and water surface.  Such cases are relatively common when radiation fog forms 

beneath an inversion on cool fall nights with otherwise little cloudiness.  Fortunately, surface 

observations typically report overcast skies or a vertical obstruction in these situations. 

d. Blending logic 

When the observations are blended, a decision structure is used to determine the final sky 

cover amount for each pixel.  The decision structure is based on the strengths of the contributing 
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observation types, or where only one observation type exists.  The creation of the blended 

analysis is predominantly guided in two ways.  First, surface observations of cloudy skies are the 

least likely to be inaccurate.  Second, for a given satellite cloud algorithm detection over an area 

identified as clear by a surface observation, the satellite observation is usually adequate, 

especially for situations with middle and high cloud.  There are also cases in which the sky cover 

product indicates cloudiness but the detection is false.  The logic works around such situations. 

STRAY LIGHT TESTS 

At night, geostationary satellite imagery is subject to stray light at certain times.  Stray 

light occurs when sunlight enters the optics of the instrument without a reflection from the 

earth’s surface.  There are approaches to mitigate stray light (Matthews 2013; Zhenping et al. 

2013), but impacts on satellite algorithms remain.  The first test involves areas of the filled 

surface observation grid containing values less than the tolerance value for clear skies, 5% 

coverage.  In such cases, if the satellite CDCTP value is greater than the threshold of 750 hPa 

(between the surface and 750 hPa), the filled surface observation grid value is used.  In addition, 

the filled surface observation grid value is used when a CDECA value is available for a point 

from both GOES-East and GOES-West and certain conditions are met to discredit the integrity 

of the satellite sky cover product coverage amount.  In such cases, significant differences in 

cloud detection are possible between GOES-East and GOES-West when stray light is impacting 

the imager on one of the satellites but not the other.  This is a possibility when there are two 

conditions met.  First, the satellite sky cover product value for the point falls between the a third 

of the CDECA value at the top of the hour, less 5% coverage, and the tolerance of 40% 

coverage.  The 40% coverage threshold results from the observation that the stray light impact 
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lasts for one quarter or one third of the total time window, depending on the number of other 

scans that are part of the window averaging.  Second, the satellite sky cover must be greater than 

10% and less than a quarter of the CDECA value including a tolerance of 5%, at the top of the 

hour.  These conditions assure that the point is not partly cloudy across multiple scans. 

When the conditions are met and both GOES-East and GOES-West CDECA and CDCTP 

values are available, the filled surface observation grid value is applied to the final blended sky 

cover analysis if the CDCTP is between the surface and 750 hPa.  If only one satellite is 

available, then the CDCTP must fall between the surface and 750 hPa.  750 hPa, approximately 7 

kft (2100 m), is used as the upper limit due to the detectability range of the surface station 

ceilometer.  In all other cases, the satellite sky cover product value is trusted and advanced to the 

final blended sky cover analysis. 

SPATIAL CONTINUITY 

The remaining logic details spatial transitions from surface observation values to satellite 

sky cover product values.  An iterative process is applied to all grid points.  In general, when the 

filled surface observation value is higher than the sky cover product value for a given candidate 

point, the filled surface observation value is used within two-thirds of the number of grid cells 

between the candidate point and the nearest surface station.  When within the remaining one-

third of the distance nearest the candidate point, the value of the candidate point is scaled with 

the surface observation, weighted linearly depending on the distance to the two-thirds extent and 

the limit of influence, which is 14 grid points or approximately 140 km.  This is predominantly a 

cosmetic effect to deter irregular boundaries or artificial sharp edges where surface stations are 

not close together.  Lastly, if the filled surface observation grid value is less than the satellite sky 
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cover product value, or they are equal, then an average is performed, weighted linearly 

depending on the distance from the surface station pixel. 

There are two reasons for trusting the surface observation grid over the satellite sky cover 

product when both are reporting some degree of cloudiness.  First, surface observations are 

closer to the traditionally thicker clouds, such as stratus, which are responsible for overcast 

conditions.  Second, the single field of view (FOV) ECA values from satellite are for the highest 

cloud only.  Consequently, the calculated ECA may be less than the ECA if the higher cloud is 

not present.  This presents challenges for assessing sky cover over the ocean or in situations 

where multi-layer cloud exists but there are no surface observations. 

e. Comparisons 

Upon initial comparisons between surface observations and the satellite sky cover 

product, the lack of precision in the surface observations is evident and the correlation appears 

poor.  There are relatively few sky cover amounts falling between the primary classifications.  

This suggests that non-routine surface station reports with adjustments to the cloud condition are 

relatively rare.  However, the histogram shown in Panel B of Figure 8 indicates a greater 

frequency of coverage values above 70% compared to lesser coverage values that are not clear. 

f. Cases 

The simplest and highest confidence cases are ones in which the satellite observation at 

the test point, the satellite observation at the closest surface station, and the surface observation 

at the closest site are all clear or all cloudy.  All possible cases are summarized in Table 1.  In 

this section, satellite observation refers to the sky cover amount from the satellite sky cover 

product.  The surface observation refers to an in-situ sky cover report from automated 
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instrumentation or a human observer.  Cloudy cases are those that are not clear.  In many cases, 

the sky cover amounts for cloudy cases are reconciled between the observing platforms. 

The case in which the satellite observation at the test point and the satellite observation at 

the closest surface station are clear, but the surface observation at the closest site is cloudy, 

occurs when the cloud properties are too similar to the underlying surface.  This is usually the 

case for low cloud and fog during the overnight hours, where visible channels cannot be used to 

determine high reflectance values indicative of cloud.  In addition, in the infrared window, 

diurnal heating of exposed land surfaces heightens contrast to low clouds, which typically erode 

during the morning hours.  This case may also occur in a scenario where there is a local, non-

cloud obstruction, such as smoke, or when it is difficult to differentiate between snow and cloud 

using remote sensing techniques.  The latter situation is most likely to occur when there is a 

human observer to view cloud given the limitations of the ceilometers in detecting high cloud.  

The result in the blended analysis is to trust the surface observation value of cloudy to override 

the clear observation from the satellite sky cover product. 

The case in which the satellite observation at the test point is clear, the satellite 

observation at the closest surface station is cloudy, and the surface observation at the closest site 

is clear most likely occurs in a situation where there is high cloud over the observing site that the 

ceilometer does not detect.  It is possible that this may be a scenario in which the satellite 

detection of cloud is false at the closest surface station.  However, since it is clear at the test 

point, via the satellite sky cover product, it is assumed that this is a natural cloud gradient, most 

likely involving high cloud, and the result is therefore to maintain clear in the blended analysis. 

When the satellite observation at the test point is clear, but the satellite observation at the 

closest surface station and the surface observation at that station are both cloudy, a natural cloud 
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gradient is assumed and the result in the blended analysis for the test point is to maintain the 

clear observation from the satellite product output.  The converse case, where the satellite 

observation at the test point is cloudy, but the satellite observation at the closest surface station 

and the surface observation at that station are both clear, is another situation of a natural cloud 

gradient.  In both situations, the agreement between the closest surface observation and the 

corresponding satellite observation provide confidence in the satellite sky cover product 

depiction of the surrounding sky cover regime.  Therefore, the satellite observation at the test 

point is trusted. 

The case in which the satellite observation at the test point and the surface observation at 

the closest site is cloudy, but the satellite observation at the closest site is clear, is a situation 

where there is typically a gradient in the type of cloud, or limited detectability of the cloud using 

remote sensing techniques.  The most likely scenario is that there is low cloud of emissivity 

similar to the surface over the observing station, but high cloud at the test point.  Such 

occurrences make it difficult to quantify the magnitude of sky cover because it is uncertain if the 

low cloud extends beneath the high cloud deck. 

The case in which the satellite observation at the test point and the satellite observation at 

the nearest surface station are cloudy, but the surface observation at that nearest station is clear, 

is a situation where there is most likely high cloud that is beyond the height of detectability for 

the instrumentation at the station.  The satellite observation is trusted in this scenario as long as it 

is high or mid-level cloud.  In some situations, where the satellite CDCTP value is indicative of 

low cloud, with a CTP greater than or equal to 750 hPa, the clear sky surface observation at the 

nearest station is trusted because of the heightened likelihood of false cloud detection on the 

satellite sky cover product. 
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The blended sky cover analysis, shown in Figure 7, captures more cloudiness than when 

compared to each of the inputs for the analysis independently.  This results from limitations of 

the surface instrumentation or remote sensing techniques in quantifying cloudiness.  Validating 

the blended analysis is difficult because there are limited single sources that provide a unique 

analog of sky cover, not already incorporated into the blended analysis, which can easily be geo-

referenced with the blended analysis grid. 

g. Efficacy of blended analysis 

Certain comparison techniques utilized assure the blended analysis is representative of 

the inputs.  Figure 8 shows the distribution of cloud/sky cover amounts in 10% increments for 

the CDECA product, in Panel A, sky cover product, in Panel B, surface observations, in Panel C, 

and the blended sky cover analysis, in Panel D.  Similarities between the satellite sky cover 

product and blended sky cover analysis are evident.  First, in both cases, sky cover amounts 

greater than 70% are more prevalent than the other cloud classifications.  However, the number 

of points with a clear or nearly clear sky cover amount, at or below 10% coverage, is substantial 

in this case.  This differs from summertime cases in which mid-coverage cloudiness is more 

common during the day as diurnal heating supports increased growth of the cumulus field over a 

large portion of the non-mountainous United States. 

The comparison between the blended analysis and the surface sky cover product is a bit 

more involved.  However, the vast number of points in the blended sky cover analysis matches 

the output from the surface sky cover product, as shown in Figure 9.  Figure 9, Panel A, shows 

the scatterplot of collocated points between the blended sky cover analysis and the sky cover 

product.  Panel B is density plot of Panel A.  The greatest deviation from the diagonal occurs for 
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corresponding points where both the blended sky cover analysis and satellite sky cover product 

amounts are mostly cloudy.  There are two effects at play in this sector of the plot.  First, there 

are areas where the gridded surface observation sky cover amounts are higher than the 

corresponding amounts in the satellite sky cover product.  In such cases, the logic trusting the 

higher surface observation value prevails.  These adjustments typically involve areas where 

cirrus clouds are above lower stratus clouds, and are often modest.  In cases where the satellite 

sky cover product value is higher than the gridded surface observation value, the satellite sky 

cover product values are adjusted to the mean value of the two inputs in the final blended 

analysis.  Such areas are likely where surface stations report a lesser sky cover amount than the 

corresponding surface sky cover product value, likely due to a bias in the sky cover product. 

The predominant manner for assuring the ideal methodology behind the blended analysis 

is to evaluate scatterplots matching the independent observation sources.  In Panel C of Figure 9, 

a scatterplot of matched surface observations and satellite sky cover product values is shown.  

The correspondence between the surface observations and satellite sky cover product is relatively 

poor, with no evident correlation along the dashed diagonal axis.  However, in preparing the 

blended analysis, the surface observations are trusted.  This decreases the number of points in the 

blended analysis where an average is employed. 

In Panel D of Figure 9, a histogram showing the frequency of differences, at increments, 

between the sky cover product and blended sky cover analysis is shown.  In general, the blended 

sky cover analysis increases the sky cover product value because the surface observation value is 

trusted over the sky cover product when at least some cloud exists.  In addition, as previously 

discussed, the blended sky cover product contains cloud where the sky cover product may not 

due to the addition of surface observations, as shown in Figure 10.  There is significant 
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cloudiness added as a result of the surface observations in the Pacific Northwest and over parts 

of Appalachia.  There is also an adjustment to the degree of cloudiness over the Midwest.  With 

this blended analysis, it is possible to compare it to the NDFD cloud cover one-hour forecast and 

prepare an optimal sky cover analysis. 

4.    Optimization methodology 

As computer and data storage capabilities have increased over the past two decades, optimization 

has become a formidable method for exploring and quantifying relationships between multiple 

datasets.  Optimization is the process of solving a problem through systematically trying to 

obtain the best objective value via changes to variables, subject to constraints.  The constraints 

form a feasible region, in the case of a linear program, a polyhedron, in which a solution is 

possible.  The point in the feasible region with the best objective value is the solution. 

In this stage of the project, there are three separate optimization procedures executed.  

Each one is explained in depth in this section.  The first produces an optimal sky cover analysis 

from the blended sky cover analysis.  This is referred to as the preparation model.  The second 

correlates NWP model variables at the analysis time to the optimal sky cover analysis.  This is 

referred to as the primary model.  The third refines the output from the previous step to further 

pursue the objective if possible.  This is referred to as the secondary model. 

a. Preparation model 

The purpose of running the preparation model is to establish for what coverage categories 

that the blended analysis did well, and those that it did poorly, and then provide a non-negative 

affine adjustment (coefficient and scalar) for fixed increments, with anchors at 0% and 100% sky 
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cover.  Generally, when the slope of the line (coefficient) is one, the distribution of values in the 

blended sky cover analysis is best.  The constraints in the model require that the slope of the line 

be non-negative.  The output from the preparation model is the optimal sky cover analysis. 

Assuming that the accuracy of the near-term grids is best, the blended sky cover analysis 

is adjusted based on a minimization of mean absolute error (Willmott 2005) between the NDFD 

total cloud cover one-hour forecast !! and the blended sky cover analysis !! every three hours.  

An optimization model performs the adjustment.  One out of every 15 points is provided to the 

optimization model as representative of the entire grid.  In order to prevent inflated cloud 

amounts from adversely impacting the optimization model, areas identified as clear in the 

satellite sky cover product are reset to clear in the adjusted blended sky cover analysis provided 

to the optimization model.  The six coefficient !! and six scalar !! solved variable values are 

then applied back to the blended sky cover analysis to produce the optimal sky cover analysis.  

Accordingly, the formulation is as follows with objective function !: 

min ! = !!!!
! + !! − !!

!

!!!

  

0 ≤ !!!!
! + !! ≤ 100 

!! = 0 
!!5+ !! = !!5+ !! 
!!25+ !! = !!25+ !! 
!!50+ !! = !!50+ !! 
!!75+ !! = !!75+ !! 
!!95+ !! = !!95+ !! 
!!100+ !! = 100 

!! ≥ 0 
where 

! ∈ ! ∈ ℤ: 1 ≤ ! ≤ 6 ,  
!!! ∈ !! ∈ ℝ: 0 ≤ !! < 5    (clear), 
!!! ∈ !! ∈ ℝ: 5 ≤ !! < 25    (mostly clear), 
!!
! ∈ !! ∈ ℝ: 25 ! − 2 ≤ !! < 25(! − 1) , 3 ≤ ! ≤ 4   (partly cloudy), 
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!!! ∈ !! ∈ ℝ: 75 ≤ !! < 95    (mostly cloudy), and 
!!! ∈ !! ∈ ℝ: 95 ≤ !! ≤ 100    (cloudy). 

 
An example of how the preparation model produces the optimal sky cover product is 

evident in the case from 11 UTC on 20 October 2013.  The case is fairly generic.  An example of 

the optimal sky cover output for this date and time is found in Figure 11.  Figure 12 shows a 

correspondence between the optimal sky cover amount and the blended analysis.  According to 

Panel A, the optimal sky cover product value is slightly higher than the blended sky cover 

analysis value for blended analysis values of less than 50%.  For blended sky cover analysis 

values of at least 65%, the optimal sky cover product value is a comparative decrease.  For 

example, according to Panel A, a 95% sky cover on the blended analysis is approximately 75% 

after optimized.  Panel B shows the difference of the blended sky cover analysis from the 

optimal sky cover product.  This indicates that approximately 21% of points experienced an 

overall decrease in value, with 10% receiving an increase.  Figure 13 shows geographically 

where the optimal sky cover is an increase or decrease from the blended analysis.  This occurs 

along gradients of sky cover. 

b. Primary model 

Once the blended sky cover analysis is optimized, the optimal sky cover analysis is 

available for use in comparison with NWP model output.  One goal of this study focuses on the 

use of optimization to find a set of coefficients and scalar adjustments to NWP model output 

cloud and moisture quantities.  The High-Resolution Rapid Refresh (HRRR) model, based on the 

WRF model framework (Ikeda et al. 2013), provides the numerical output for input into the 

optimization model.  Since the model assimilates GOES cloud products, it is ideal for providing 

an analysis and output which closely matches the blended and optimal analyses produced as part 
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of the first portion of this study.  The spatial resolution and hourly availability further increase 

the utility of the HRRR model for this project, compared to other operational and research NWP 

models that are initialized only four times per day at spatial resolutions well above cloud scale. 

The HRRR model is a 3 km model run hourly as an experimental cloud-resolving 

atmospheric model (Benjamin 2013).  It is based on the Advanced Research WRF (ARW) core 

and uses the Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary layer (PBL) scheme 

and the RUC nine-level land surface model (Benjamin 2013).  The HRRR model employs the 

Thompson et al. (2008) microphysics scheme, where hydrometeors are binned into one of five 

classifications:  cloud water, cloud ice, rain, snow, and graupel.  The model assimilates data from 

rawinsondes, profilers, radars, lightning detectors, aircraft, surface stations, and buoys, as well as 

GOES atmospheric motion vectors; Advanced Microwave Sounding Unit (AMSU), High-

resolution Infrared Radiation Sounder (HIRS), and Microwave Humidity Sounder (MHS) 

radiances; GOES CTP and temperature retrievals, Global Positioning System (GPS) precipitable 

water amounts, and WindSat scatterometer data, among others (Benjamin 2013).  Temperatures 

for HRRR model grid points beneath the surface are calculated through an adiabatic adjustment 

of the mean temperature at the second and third model layers above the surface, with relative 

humidity maintained for underground points from the mean of the same second and third model 

layers (Chuang, DiMego, and Baldwin 2004).  For all points, relative humidity in the HRRR 

model is calculated according to Schlatter and Baker (1981) using a polynomial approximation. 

For the primary model, a binary (or “zero-one”) optimization problem, a case of the 

mixed integer optimization problems is formulated.  While a mixed integer formulation is 

nonconvex by definition, and therefore difficult to solve, relaxation procedures can produce a 

convex linear optimization problem that can be solved relatively easily.  However, because 
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binary optimization problems fall in computational complexity case “NP-complete”3 (Karp 

1972), there is not an efficient method for finding the solution.  The larger the problem, the 

longer it takes to solve. 

In this portion of the project, two commercial optimizers/solvers are used to produce a 

solution:  CPLEX (http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/) 

and Gurobi (http://www.gurobi.com/).  Both were provided free of charge for use in this project 

under an academic license.  The primary reason for the use of these optimizers is performance.  

Since this project requires running the optimizer every hour, consistent with the run frequency of 

the HRRR model, a slow optimizer is computationally inhibitive.  Even with these commercial 

optimizers, the time to reach a solution for a model with 110 representative sample points, as 

developed here, can exceed 1000 seconds on a multi-threaded server.  Two different optimizers 

are used to ensure an ideal solve time, compare results, and ensure consistency. 

The objective of the primary model is to minimize the mean absolute error (Willmott 

2005) between the optimal sky cover analysis and an affine sum of relative humidity, cloud 

water mixing ratio, rain water mixing ratio, cloud ice mixing ratio, and snow mixing ratio, at 

nine pressure surfaces:  200 hPa, 300 hPa, 500 hPa, 700 hPa, 800 hPa, 850 hPa, 900 hPa, 950 

hPa, and 1000 hPa, as well as absolute vorticity at 200 hPa.  As part of staging the HRRR model 

analysis output for the optimization model, each of the HRRR model output fields is converted to 

a new grid that matches the domain (where defined) and projection of the blended analysis and is 

modified point-wise such that the updated center point value is a mean value for the celestial 

dome, consisting of gridded values at and surrounding each grid point.  The celestial dome mean 

is the mean of the values for the field within a square of side length 40 km (two points left, right, 
                                                
3 The “NP” in “NP-complete” refers to “nondeterministic polynomial time”. 
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up, and down).  Lastly, the mean celestial dome values from the initialization time output and the 

subsequent forecast hour output are averaged with equal weight.  The formulation of the 

optimization model is careful to address and limit the impact of the discrepancy that results from 

a linear approximation of a nonlinear relationship.  In addition, per the definition, cloud/sky 

cover, as it counts toward the objective value, cannot exceed completely overcast skies (100%), 

and cloud/sky cover is constrained from becoming negative (less than 0%).  The mixed integer 

optimization implementation does allow the sum of all of the products of the coefficient and the 

mixing ratio quantities, and attendant scalars, within a column to exceed or fall below the 

defined cloud cover range (0% to 100% sky cover) depending on whether there is condensate 

within the column.  However, when this occurs, the error is calculated as if the quantity is at that 

bound (0% or 100% sky cover). 

Lastly, absolute vorticity is an odd presence in this formulation.  Though Kvamstø (1991) 

found no relationship between cloud cover and other dynamical quantities, including vertical 

velocity, advection of thickness, advection of equivalent potential temperature, relative vorticity, 

and stratification, absolute vorticity is added here as a pre-conditioner for the other terms.  That 

is, the main purpose of absolute vorticity is to adjust the cloud cover based on the favorability of 

the environment for cloudiness from a dynamical perspective.  Though there is not a bright-line 

relationship for absolute vorticity and cloud cover, and the thermodynamic environment plays a 

controlling role in cloud cover, areas of positive vorticity (in the Northern Hemisphere) are more 

dynamically active, invoke diabatic processes, and therefore can be cloudier, whereas the 

converse is true in areas of negative vorticity. 

Due to the substantial number of grid points, a subset of 110 points is chosen for use with 

the primary optimization model.  These grid points are selected randomly at each cycle based on 
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their general representativeness of all of the points on the grid, and their quality for forming 

meaningful relationships between the selected atmospheric quantities and sky cover.  The 

distribution of sky cover amounts for the selected points is similar to the distribution for all 

points.  All grid points are binned depending on the corresponding “truth” value from the optimal 

sky cover analysis and whether or not the point contains a non-zero mixing ratio amount.  The 

bins have widths of 10% sky cover with a separate bin for test points with no condensate but an 

optimal sky cover amount less than the mean value rounded to the nearest 10% interval.  For 

optimal sky cover amounts less than 10%, the binned points must contain no cloud condensate.  

This makes 11 bins in total, with one bin for each 10% increment in sky cover, and then one bin 

for high optimal sky cover amounts but no condensate.  Points with no condensate and an 

optimal sky cover amount of at least the mean value rounded to the nearest 10% interval are not 

considered. 

In addition, fields from the HRRR model output with few non-zero values are removed.  

If the number of randomly selected points with a non-zero value is less than six for a given field, 

then the values of all of the points for that field are set to zero.  This eliminates uncharacteristic 

coefficient and scalar values in the solution that are calculated from only a few points. 

Along with the aforementioned physical and mathematical assumptions, there are a few 

basic assumptions that are part of the optimization process.  First, the assumption is that the 

distribution and magnitude of the atmospheric quantities in the model analysis are correct.  For 

that reason, it is desirable to use a NWP model that assimilates a large and diverse number of 

observations.  Second, the assumption is that the relationship between the quantities in the 

analysis is the same as in subsequent forecast hours.  For example, if there is a deficiency in the 

model or one of the parameterizations that decreases overall water content with time, the 
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accuracy of the solutions formulated using the optimization model adjustments will likewise 

decrease with time.  Third, due to the complexity of the problem, slight alterations in the data 

and constraints may lead to notably contrasting solutions despite similar objective values.  For 

that reason, results must be considered over a substantial time interval containing multiple runs 

and scenarios. 

DATA VARIABLES 

The data variables for the primary model are defined prior to the execution of the model.  

They are as follows for this subsection.  !! represents the “truth” value for the !th randomly 

chosen point.  In this case, !! is drawn from optimal blended sky cover grid, where the notation 

used for any such point on the grid, not just a chosen point, is !!.  !!,! represents the HRRR 

model analysis value for the matching !th point in the !th field, whereas !!,! is equal to one when 

!!,! is greater than zero, and zero otherwise, for the condensate fields.  The notation !!,! refers to 

all of the non-missing points on the grid.  !!! represents the positive values of absolute vorticity 

from the HRRR model analysis, at corresponding !th points, and is zero otherwise, whereas !!! 

contains the negative values of absolute vorticity for the HRRR model analysis and is zero 

otherwise.  Thus, absolute vorticity !! = !!! + !!!.  Likewise, !!! and !!! contain all non-missing 

grid points of positive and negative absolute vorticity, respectively, not just those corresponding 

to a contributing !!.  The data variable !! is defined subsequently.   

MODEL VARIABLES 

The model variables are those variables that are solved through the execution of the 

primary model in seeking the best objective value.  All of the optimization model variables are 
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interconnected through constraints and the objective.  The mean absolute error (MAE) value 

used in the objective is !! ∈ (−∞,∞) ⊂ ℝ and the variable that carries the slack as appropriate 

is !! ∈ (−∞,∞) ⊂ ℝ.  Other real-valued model variables are constrained such that 

!! ,!! , !! ,!, !! ∈ 0,100 ⊂ ℝ, 

where !! is the relative humidity threshold at 1000 hPa above which a coefficient and possible 

scalar apply, and !" = !!!  where ! is equal to the number of ! points and ! is therefore the 

mean of all !! points. !! is defined subsequently as part of the threshold procedure for 1000 hPa.  

Otherwise, no scalar values !! apply to relative humidity values.  In addition, 

!! , !! , !!, !!, !! ∈ 0,∞ ⊂ ℝ, 

where !! is the variable applied to positive absolute vorticity and !! is the variable applied to 

negative absolute vorticity.  The variable !! is defined subsequently as part of the threshold 

procedure for 1000 hPa.  The general variable !! is applied as a coefficient to field !.  Lastly, 

ℎ! ∈ −1,0 ⊂ ℝ, where ℎ! is the variable applied to the negative relative humidity values and 

100% such that the lesser the relative humidity value, the greater the decrease in sky cover 

depending on the magnitude of ℎ!.  The ℎ! coefficient decreases the entire cloud fraction 

independent from the corresponding !! variable for relative humidity values, but ℎ! does not 

apply to condensate or other non-relative humidity variables.  The full contribution of relative 

humidity to the final sky cover coverage is therefore (!! − ℎ!)!!,! + 100ℎ! for a given !th 

relative humidity field, remembering that ℎ! is negative or zero. 

The mixed integer (binary) variables in the optimization model, controlling the decision 

structure, are !! and !!, such that !! ,!! ∈ [0,1] ⊂ ℤ.  These variables are valued at each point, 

with !! activating the slackness variable and !! controlling points subject to the threshold. 
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If there is condensed water in the integrated column, where !! ≤ 1 for fields ! ≤ !, in the 

cases of the relative humidity levels, including 1000 hPa, and !! = 0 for fields ! < !, in the cases 

of the relative humidity levels, excluding 1000 hPa, then for such a point !, 

!! + !! = !!,!!!
!

+ !!!!! + !!!!! + !!,!!!
!

+ 100− !!,! ℎ!
!

+ !!,!!! + !! , 

and scalars only apply when there is a non-zero quantity at that point. 

The following constraints assure that !! + !! is at least valued at 1% sky cover, and !! 

assumes a positive value when !! is at its upper limit.  Since !! appears in the objective, and it is 

physically possible for the sum of cloud coverage through multiple layers to exceed 100%, the 

variable !! allows for growth of the left-hand side of the equation without impact to the objective 

value, since the value of !! cannot exceed 100%.  Below, the integer variable !! assures that !! is 

only non-zero when !! is at its maximum. 

!! ≥ 1 
!! ≥ 0 

100 1− !! + !! ≥ 100 
10000!! ≥ !! 

If there is no condensed water in the integrated column (only water vapor), then for such 

a point !, 

!! + !! = !!,!!!
!

+ !!!!! + !!!!! + 100− !!,! ℎ!
!

+ !!,!!! + !! , 

where the following constraints assure that !! + !! does not exceed 100%, and !! assumes a 

negative value when !! is at its lower limit.  In such scenarios, !! assumes the role of the 

slackness variable where !! + !! is non-positive when !! is zero, and these constraints apply. 



36 

!! ≤ 0 
!! ≤ 100(1− !!) 
−10000!! ≤ !! 

The following constraints apply for all ! points to minimize the absolute error between 

the “truth” value and the optimal formulation. 

!! − !! ≤ !! 
!! − !! ≤ !! 

The following two constraints establish whether !! is equal to zero or one for each !th 

point.  This is based on the threshold variable !!.  If !!,! is greater than !!, then !! must be set to 

zero according to the constraint !!,!!! ≤ !! where !! is the threshold within field !, which is 

relative humidity at 1000 hPa.  In addition, !! − !!,! ≤ 100!! is also a necessary constraint in 

order to assure !! assumes the value of one in the circumstances where !!,! is less than or equal 

to !!.  The following three constraints set !! equal to !! if !! is zero.  If !! = 1, then !! = 0. 

!! ≤ !! 
!! ≤ 100(1− !!) 
!! ≥ !! − 100!! 

The following three constraints set !! equal to !! if !! = 0.  If !! = 1, then !! = 0. 

!! ≤ !! 
!! ≤ 100(1− !!) 
!! ≥ !! − 100!! 

For field ! > !, in situations where there is condensate within the column, individual 

scalar adjustments are constrained such that, for a point ! in a set ! of all point values !!, 

!! ≤ min
!∈!

!! 

where !! is a point assuming the value of !! when !! ≥ 10 and !!,! > 0, and is otherwise zero. 
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In addition, in order to assure some upper bound on a coefficient that may promote sky 

cover well beyond overcast (due to the presence of the slackness variable !!), the following 

constraint is set such that no value !!,! exists whose product with the solution coefficient !! is 

greater than 200% sky cover. 

max
!∈!

!!,! !! ≤ 200 

There is also a constraint to assure that the maximum positive absolute vorticity on the 

grid does not produce more than complete cloud/sky coverage. 

max
!∈!

!!! !! ≤ 100 

For all ! points, !!,! is equal to !!,! except when  !!,! = 0.  In such a case when !!,! = 0, 

!!,! is effectively infinity.  For a given field !, if there is at least one point ! for which !!,! ≠ 0, 

then the following constraint is set: 

min
!∈!

!!,! !! + !! + min
!∈!

!!! !! + 100−min
!∈!

!!,!
!

ℎ! + min
!∈!

!i,!
!

!! ≥ 1. 

This constraint assures that for a minimal amount of condensate, the output provides for a 

positive, non-zero sky cover amount.  The distribution of the values in the output is also 

controlled, such that ! − ! ≤ ! ≤ ! + !, where ! is the mean from the optimal sky cover 

product and ! = 5 (%) is the tolerance. 

There are also constraints to assure the integrity of the values at the extremes of the 

range.  This promotes areas that are completely clear or nearly clear, and completely cloudy or 

nearly cloudy.  The constraint to maintain the mean of the points with “truth” values in the 

lowest 10% coverage range, such that 0 ≤!! ≤ 2!, is !!!!! = !!!! , where !!! ∈ !!, !! 
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contains only and all !!! which have a corresponding !! ≤ ! for a given !, and !!! is the number 

of objects in !!.  Similarly, for the highest 10% coverage range, where !!! ∈ !!, !! contains 

only and all !!! which have a corresponding !! ≥ 100− ! for a given !, and !!! is the number of 

objects in !!, 100− 2! ≤!! ≤ 100 where !!!!! = !!!! . 

Lastly, the objective, a minimization function, is 

min
1
! !!

!

 

where !, the same as referenced previously, is the number of objects in !, and every and only 

!! ∈ !.  From a physical perspective, the optimizer is seeking a solution where a combination of 

certain input fields most closely matches the sky cover for the incorporated points.  In order to do 

this, it is providing for a relationship between the chosen field and the cloudiness, or lack 

thereof.  The input fields are expected to contain the physical basis for cloudiness.  Those fields 

that are consistently chosen, over multiple runs, are most likely to have a direct physical role in 

the existence of cloudiness, and possibly, the creation or decay of it. 

c. Secondary model 

There is one final optimization step done following the completion of the primary 

optimization.  A second optimization model is run to determine within a given test field, for 

chosen points with no condensate, whether a model-determined threshold exists such that setting 

the sky cover to zero for points not greater than the threshold decreases the MAE of the entire 

grid, and for chosen points with condensate, whether an equal-valued or greater threshold exists, 

at and under which the output is scaled per a model-determined coefficient, which decreases the 

MAE of the entire grid.  During this stage, the number of test points in each bin increases to ten 
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times the number used for the primary optimization model.  The initial set of points is retained in 

the bins as new points are added so the total size of the bin is 11 times of that previous. 

Then, a series of models are run.  The first model execution tests the primary model sky 

cover output to assess if thresholds exist within the sky cover output to decrease the MAE.  Each 

subsequent model execution tests a single level of relative humidity.  The one with the lowest 

MAE is used as the final.  The model is formulated similarly to the 1000 hPa relative humidity 

threshold test in the primary model.  The significant difference is that here, the selection of the 

relative humidity threshold for one level impacts the entire result – the contribution of each level 

to the sky cover is negated at certain points.  In addition, columns with cloud condensate are 

treated differently than those without.  This assures that cloudy regimes are preserved from the 

HRRR model.  The MAE is always at least no worse than the output from the primary model. 

The secondary model employs the following new model variables, with constrained 

ranges, that are discussed subsequently.  Two variables, !! and !!, are thresholds, and are 

constrained such that !! ≤ !!.  ! is a model variable coefficient for scaling sky cover at points 

with condensate and/or positive absolute vorticity. 

!!! ∈ (−∞,∞) ⊂ ℝ 
!!!, !! , !! ∈ [0,100] ⊂ ℝ 

! ∈ [
!
100 , 1] ⊂ ℝ 

!!! ∈ [0,1] ⊂ ℤ 

For all points, the following constraints are set, where !!! is the “truth” value from the 

optimal sky cover analysis, as also used in the primary model (but now with more points), !!! is a 

model variable for the updated sky cover amount, and !!! is the model variable representing the 

MAE, similar to the primary model. 
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!!! − !!! ≤ !!! 
!!! − !!! ≤ !!! 

In addition, !!! is the !! value from the primary model and !!! is a binary integer model 

variable for controlling the decision structure discussed in this subsection. 

!!! ≥ !!! − 100!!! 

For any ! point where there is no condensate in the column, and absolute vorticity is non-

positive, the constraint !!! ≤ !!! must hold such that the adjusted value at point ! cannot exceed 

the value !!! from the primary model, and the constraint !!! ≤ 100(1− !!!) must hold such that 

the model variable !!! controls the adjusted value model variable !!!.  If !!! = 1, then !!! = 0.  

The initial run of the secondary model uses only the output from the primary model.  Individual 

fields are not examined until the second and subsequent runs.  Collectively, for the initial run, 

these two constraints force original point values !!! greater than a threshold !! to assume a value 

of !!! = 0.  This drives the subsequent decision structure involving !!!. 

!!!!!! ≤ !! 
!! − !!! ≤ 100!!! 

Subsequent runs examine relative humidity at the levels specified in the primary model, 

where !!! is the generic original relative humidity variable value at a level from the HRRR model 

at point !.  The constraints for those tests are formulated as !!!!!! ≤ !! and !! − !!! ≤ 100!!!. 

For points where cloud condensate and/or positive absolute vorticity exist, the following 

constraints apply a coefficient adjustment ! to the original value !!! when !!! is less than the 

threshold !!.  This is to ensure integrity of the placement of model cloud condensate. 

!!! ≤ !!! + 100!!! 
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!!! ≤ 100 1− !!! +!!!!   
!!! ≥ !!!! − 100(1− !!!) 

For the initial run containing such condensate points, the following constraints apply.  

They are similar to those previous with the exception that a different threshold, !!, is used. 

!!!!!! ≤ !! 
!! − !!! ≤ 100!!! 

Otherwise, for subsequent runs using point values !!! from a relative humidity field for a 

given level, the constraints are as follows for condensate and positive absolute vorticity points. 

!!!!!! ≤ !! 
!! − !!! ≤ 100!!! 

Finally, the constraint ! − ! ≤ ! ≤ ! + !, where ! = 5 (%), controls the mean ! where 

!!! = !!!!  and !! is the number of ! points contributing to the sum.  There are also 

constraints to assure the integrity of the values at the extremes of the range.  This promotes the 

integrity of areas that are completely clear or nearly clear, and completely cloudy or nearly 

cloudy.  The constraints to maintain the mean of the points with “truth” values in the lowest 10% 

coverage range are as follows, where !!!
! ∈ (!!)!, (!!)!contains only and all !!!

!
 which 

have a corresponding !!! ≤ ! for a given !, and !!! ! is the number of objects in (!!)!. 

0 ≤ (!!)! ≤ 2! 
!!! !(!!)! = !!!

!

!

 

Similarly, where !!!
! ∈ (!!)!, (!!)! contains only and all !!!

!
 which have a 

corresponding !!! ≥ 100− ! for a given !, and !!! is the number of objects in (!!)!, the 

following constraints apply. 
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100− 2! ≤ (!!)! ≤ 100 
!!! !(!!)! = !!!

!

!

 

Lastly, where !!, as aforementioned, is the number of objects in !!, and every and only 

!!! ∈ !!, the objective minimizes the MAE: 

min
1
!! !!!

!

. 

As formulated, this model attempts to characterize and refine the column cloudiness 

based on the sky cover, or relative humidity field at a single level.  Although the model solution 

occasionally includes one of the levels, run-to-run consistency is not evident.  In general, for 

approximately 54% of the runs during the demonstration, discussed subsequently, the optimizer 

running the secondary model could not find a level that improved on the MAE better than an 

adjustment based on thresholds applied to the primary model sky cover output itself.  For the 

cases in which a relative humidity level decreased the MAE, that level most commonly fell in the 

middle or upper troposphere.  These results are summarized in Table 2.  This suggests up to three 

possible conclusions.  First, it may not be possible to represent the relationship between sky 

cover and relative humidity as a threshold in this manner.  Second, assuming some relationship 

between relative humidity and sky cover, it is possible that middle and upper tropospheric 

cloudiness is a larger contributor to sky cover than lower tropospheric cloudiness.  Third, it is 

possible that cloudiness in the middle and upper troposphere is not strongly correlated to lower 

tropospheric relative humidity.  While it is possible that the first two potential conclusions can be 

attributed to the aforementioned assumptions and the design of the secondary model, the third 

conclusion is examined subsequently in the summarized results of the primary model solutions. 
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5.    Cases 

Three cases are presented that demonstrate the performance of the optimization process and the 

three stages of optimization.  The first case is a synoptic pattern similar to one characteristic of 

summer, with a large field of cumulus clouds and convective processes, some deep.  The second 

case is a large mid-latitude cyclone over the contiguous United States.  Finally, the third case is a 

relatively clear period.  The adaptive nature of the algorithm allows for a different but ideal 

result in each of these cases.  However, some cloud features that exist on climatic or seasonal 

scales, such as marine stratocumulus off the West Coast of the United States, will always play 

into the model logic for assuring the best formulation. 

a. 18 UTC on 4 October 2013 

The first case is 18 UTC on 4 October 2013.  This case demonstrates the skill of the 

technique for a case with a mid-latitude cyclone, a tropical cyclone, and a large diurnal cumulus 

cloud field.  On this day, there is surface high pressure across the southeastern United States with 

tropical storm Karen south of New Orleans, Louisiana.  A surface stationary front from New 

York City, New York, to Chicago, Illinois, to Dodge City, Kansas, separates an above average 

warm and moist day for early October in the Ohio Valley from cooler, seasonal weather to the 

north.  A low pressure system is strengthening over western Kansas.  The visible satellite image 

in Figure 14 indicates the approximate type and coverage of clouds over various areas in the 

contiguous United States.  Scattered clouds are evident in the southeastern United States with 

deep convection associated with tropical storm Karen over the Gulf of Mexico.  The Dakotas and 

Great Lakes are overcast.  There is also low cloud apparent in the Willamette Valley of western 

Oregon. 
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 The blended sky cover analysis is shown in Figure 15, depicting the overcast skies across 

the northern United States and partial cloudiness over the southeastern United States.  The 

NDFD total cloud cover one-hour forecast in Figure 16 is similar to blended sky cover analysis 

with some differences in the extent of overcast skies.  For example, the magnitude of the sky 

cover resulting from the low cloud in the Willamette Valley is much less than in the blended 

analysis.  The blended analysis also suggests more substantial sky cover across portions of the 

Lower Mississippi Valley.  The NDFD one-hour forecast contains mostly clear skies across New 

Mexico and Nevada that is not as widespread in the blended sky cover analysis. 

 The initial-hour HRRR total cloud cover analysis is shown in Figure 17.  The deep 

convection in the Gulf of Mexico is resolved as overcast.  Sky cover across the cumulus field is 

patchy.  There are portions of the cumulus field across western Arkansas and northeastern 

Missouri that are output as clear in the HRRR total cloud cover analysis.  The cloud cover output 

for the low cloud in the Willamette Valley is resolved. 

 The HRRR optimal sky cover product shown in Figure 18 contains a broad area of 

overcast skies across the Northern Plains, with additional overcast skies related to the convection 

in the Gulf of Mexico.  An enhanced area in the cumulus field runs along Lower Mississippi 

Valley and Ohio Valley.  A patch of low cloud in the Willamette Valley is resolved.  There is a 

gradient from mostly clear skies to mostly cloudy skies along the border between Montana and 

North Dakota, extending northward into Saskatchewan, Canada.  There are clear skies from 

California extending through Arizona and New Mexico. 

 The histograms in Figure 19 demonstrate the distribution of certain sky cover increments 

for the four products previously discussed.  There are some evident features.  First, comparing 

Panel C to the others, the HRRR total cloud cover analysis contains significantly more clear and 
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nearly clear sky coverage areas than the others.  This comes mainly at the expense of cloud 

coverage areas between 10% and 90%, which are fairly evenly distributed in 10% increments.  

Second, the tri-modal nature of the distribution in Panel D is most similar to Panel B.  The 

blended sky cover analysis histogram in Panel A shows a greater amount of sky coverage values 

between 70% and 90% than between 40% and 70%. 

 Figure 20 shows the distribution of difference values for the HRRR total cloud cover 

analysis and HRRR optimal sky cover product compared to the blended sky cover analysis and 

NDFD total cloud cover one-hour forecast.  Panel A is the HRRR total cloud cover analysis less 

the blended sky cover analysis.  Panel B is the HRRR optimal sky cover product less the blended 

sky cover analysis.  Both have negative bias.  The mean error for the HRRR optimal sky cover 

product compared to the blended sky cover analysis is -8.3% sky cover.  This compares to a 

mean error of -17.4% sky cover for the HRRR total cloud cover analysis compared to the same 

analysis.  The improvement in mean error for the HRRR optimal sky cover product is 9.1% 

compared to blended sky cover analysis.  Panel C is the HRRR total cloud cover analysis less the 

NDFD total cloud cover one-hour forecast, and Panel D is the HRRR optimal sky cover product 

less the NDFD total cloud cover one-hour forecast.  The mean error for the HRRR optimal sky 

cover product compared to the NDFD total cloud cover one-hour forecast is -4.1% sky cover.  

This is better than a mean error of -13.3% sky cover for the HRRR total cloud cover analysis 

compared to the same analysis.  The improvement in the mean error for the HRRR optimal sky 

cover product is 9.2% compared to the NDFD total cloud cover one-hour forecast. 

The geographical distribution of the difference between the HRRR optimal sky cover 

product and the blended analysis is shown in Figure 21.  The areas of best agreement are those 

that are either completely clear or completely cloudy.  Results are mixed in the diurnal cumulus 
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field area.  Significant areas of mean error include southeastern Utah and northern Maine.  In 

these areas, the blended sky cover analysis value is much higher than the HRRR optimal sky 

cover product output.  An investigation into these areas finds that there is little to no cloud water 

condensate and relative humidity values from the correlated fields of 200 hPa, 850 hPa, 900 hPa, 

950 hPa, and 1000 hPa, over 90% relative humidity, are generally low compared to the rest of 

the grid.  For southeastern Utah, there is non-zero 700 hPa cloud water mixing ratio.  However, 

the optimizer running the primary model did not strongly correlate the quantity with sky cover.  

As a result, cloudiness is underrepresented there.  For northern Maine, the optimizer did not have 

any evidence of cloud condensate indicating a potential fault in the assimilation and pre-

execution stage of the HRRR model run providing the input for the optimization model. 

 In comparison, the difference of the NDFD total cloud cover one-hour forecast from the 

HRRR optimal sky cover product, depicted in Figure 22, demonstrates similar issues.  The 

HRRR optimal sky cover product indicates a particularly high bias compared to the blended sky 

cover analysis over Montana and a large portion of Idaho.  This figure also indicates that the 

NDFD one-hour forecast does not delineate the region of more significant cloudiness over the 

Lower Mississippi Valley and the Ohio Valley, with evidence of a high bias in that general 

corridor.  There is a slight overestimate, compared to the NDFD one-hour forecast, of the low 

cloud in the Willamette Valley, with an underestimate surrounding it.  There is also an 

underestimate of sky cover over New Mexico.  In some cases of underestimated sky cover, the 

fault for the difference lies more with the NDFD one-hour forecast than the optimal sky cover 

product.  This example demonstrates that forecasters may not currently have sufficient skill or 

dedicate enough attention to delineate between denser fields of cumulus clouds despite potential 

model skill in this area. 
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b. 3 UTC on 19 October 2013 

The next case is from 3 UTC on 19 October 2013.  This case demonstrates the skill of the 

technique for a situation with a large area of clear skies, a large area of non-overcast skies, and a 

stratocumulus deck off the California coast.  The synoptic pattern across the contiguous United 

States consists of surface high pressure across the western and central United States with three 

weak low pressure systems in succession from over the Great Lakes to the Deep South.  The first 

system is moving from Manitoba, Canada, into Minnesota.  The second system extends from a 

weak area of low pressure over Lake Huron along a cold front to a secondary low over Arkansas, 

and the front continuing to extend into the Gulf of Mexico near Galveston, Texas.  The third 

system is a weak depression over southeastern Georgia.  The geographical distribution of 

cloudiness across the contiguous United States is shown through the infrared window satellite 

image in Figure 23.  The satellite image reveals patchy low cloud across the Northern Plains, 

more widespread mid-level and low cloud across the Middle and Lower Mississippi Valley, and 

some convective clouds in the vicinity of New Orleans, Louisiana.  There is also a small patch of 

cloud on the leeside of the ridge over central Colorado. 

 The blended sky cover analysis appears in Figure 24.  There are a number of local 

minima in and surrounding the state of Minnesota as a result of variations in the sky cover 

reports from the dense surface observation network in that state.  One contiguous overcast cloud 

area is in central Missouri with another in the Dakotas.  This is in contrast to the NDFD total 

cloud cover one-hour forecast, as shown in Figure 25, which depicts relatively few overcast 

areas.  The NDFD one-hour forecast also lacks any definition to the sky cover field over 

Colorado, with generally inflated sky cover amounts further south across eastern New Mexico, 

compared to the blended analysis and subjective analysis of the infrared window imagery. 
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 The HRRR total cloud cover analysis shown in Figure 26 indicates patches of clear sky 

within the cloud deck over the Northern Plains, and similarly over the Deep South.  However, 

these patches do not correspond to areas that are void of cloud as evident using the blended sky 

cover analysis.  Areas of overcast cloud are likewise patchy, with the exception of the marine 

stratocumulus deck off the coast of California. 

 The HRRR optimal sky cover product shown in Figure 27 differs from the HRRR total 

cloud cover analysis in that there is a more expansive area of overcast clouds from Missouri into 

central Texas, and also along the Gulf Coast into the Carolinas.  The clear area in the 

northeastern United States is well defined with a complex sky cover regime over the Northern 

Plains.  The magnitude of sky cover resulting from the stratocumulus deck appears appropriate 

as well, with a large clear region over the western United States. 

The histograms shown in Figure 28 depict a diversity of distributions and balance 

between clear and overcast areas.  The distribution of values in the histogram of the blended sky 

cover analysis that is shown in Panel A reveals a large percentage of clear and nearly clear areas.  

Panel A also indicates a relatively even distribution of sky cover amounts between 10% and 

70%.  The distribution of Panel B for the NDFD total cloud cover one-hour forecast reveals a 

slight increase in the number of sky cover amounts between 60% and 90%.  Panel D differs from 

Panel C in that there is a marked decrease in the number of clear and nearly clear values in the 

initial-hour HRRR optimal sky cover product compared to the HRRR total cloud cover analysis, 

and a marked increase in the overcast and nearly overcast increment for sky cover amounts 

between 90% and 100%.  There is a decrease in the number of sky cover amounts within 10% 

increments between 10% and 90% for the HRRR optimal sky cover product.  There is little 

change over this range for the HRRR total cloud cover analysis. 
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 The HRRR total cloud cover analysis and HRRR optimal sky cover product are verified 

against the blended sky cover analysis and NDFD total cloud cover one-hour forecast, and the 

histograms of these difference comparisons is shown in Figure 29.  All four panels show a 

negative bias, but Panel B, the difference of the blended sky cover analysis from the HRRR 

optimal sky cover product shows a particularly good relationship compared to Panel A, the 

difference of the blended sky cover analysis from the HRRR total cloud cover analysis.  The 

mean error for the HRRR total cloud cover analysis is -13.2% sky cover, whereas the mean error 

for the initial-hour HRRR optimal sky cover product is -6.3% sky cover, when both are 

compared to the blended analysis.  The same relationship is evident when comparing the HRRR 

total cloud cover analysis and HRRR optimal sky cover product to the NDFD total cloud cover 

one-hour forecast, shown in Panels C and D, respectively.  The mean error for the HRRR total 

cloud cover analysis is -13.7% sky cover, whereas the mean error for the HRRR optimal sky 

cover product is -6.8% sky cover, when both are compared to the NDFD one-hour forecast.  

When verifying the HRRR total cloud cover analysis and HRRR optimal sky cover product 

against either the blended analysis or the NDFD one-hour forecast, the HRRR optimal sky cover 

product improves the mean error by 6.9% sky cover over the HRRR total cloud cover analysis. 

 The geographical difference of the blended sky cover analysis from the HRRR optimal 

sky cover product is depicted in Figure 30.  Areas of the most significant disagreement extend 

from central Montana through Iowa.  There is also an overestimate in Colorado.  In both cases, 

the significant difference is the result of lacking cloud water mixing ratio at the levels provided 

to the optimizer, and competing relationships between relative humidity and sky cover.  The 

optimizer found relationships between relative humidity and sky cover at 300 hPa, 500 hPa, 900 

hPa, 950 hPa, and 1000 hPa over 88% relative humidity.  The relationship between 950 hPa 
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relative humidity and sky cover is the strongest.  In this case, there is particularly high relative 

humidity at 950 hPa in eastern Colorado, and relative minima in relative humidity at that level 

over southern Iowa, southwestern South Dakota, and much of Montana, largely responsible for 

the inflated sky cover and insufficient sky cover, respectively.  This case indicates that despite 

the magnitude of the relative humidity, the level of cloudiness can vary considerably.  It also 

demonstrates a pitfall with attributing cloud/sky cover solely to relative humidity. 

 Interestingly, the comparison of the HRRR optimal sky cover product with the NDFD 

total cloud cover one-hour forecast, as shown in Figure 31, reveals some of the same issues as 

seen with the aforementioned comparison to the blended sky cover analysis.  This confirms that 

the blended sky cover analysis is an adequate validating analysis for the NDFD total cloud cover 

one-hour forecast.  The blended sky cover analysis is also ideal because it lacks political 

boundaries resulting from different forecasts between NWS office areas of responsibility.  It also 

has the potential to adequately represent the conditions without unintentional human error such 

as failing to update the forecast grid routinely.  For example, the underestimate in sky cover over 

New Mexico is likely false considering the blended sky cover analysis. 

c. 12 UTC on 5 November 2013 

The last case is 12 UTC on 5 November 2013.  This case demonstrates the skill of the 

optimization method for a situation with a limited degree of clear skies and a wide range of cloud 

types and sky cover amounts evident on satellite imagery.  On this day, an occluded low pressure 

system is south of Hudson Bay with developing low pressure in southeastern Colorado.  High 

pressure at the surface and ridging aloft extends across the eastern United States.  There is 

another low pressure system approaching the Pacific Northwest.  The geographical distribution 
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of cloudiness across the contiguous United States is shown through the infrared window satellite 

image in Figure 32.  A large amount of thick cloud is apparent across the central Plains, with 

additional cloudiness across the Lower Mississippi Valley extending into the Ohio Valley.  There 

is also expansive partial cloudiness over the Atlantic Ocean. 

 The blended sky cover analysis in Figure 33 shows a wide range of sky cover conditions.  

Overcast skies are evident in the Central Plains and Pacific Northwest.  There are also pockets of 

lesser sky cover across parts of Minnesota and the Northern Plains.  The NDFD total cloud cover 

one-hour forecast shown in Figure 34 depicts the range in cloudiness that NWS meteorologists 

predicted.  The general pattern is similar to the blended sky cover analysis, but the details are 

much different.  For example, there are differences in forecaster opinion between NWS office 

areas of responsibility that lead to gradients of sky cover along political boundaries.  This is most 

evident on the border between Alabama and Mississippi, but also is apparent in Lake Michigan. 

 The current HRRR total cloud cover analysis for sky cover is not indicative of the sky 

condition at all portions of the domain.  For example, the HRRR total cloud cover analysis, 

shown in Figure 35, does not suggest any cloudiness over portions of Appalachia, where it is 

evident from satellite imagery and the blended analysis that cloudiness is present.  In addition, 

there are a large number of relative maxima and minima, sometimes in close proximity, making 

for unnatural sky cover gradients. 

 The initial-hour HRRR optimal sky cover product is shown in Figure 36.  A large area of 

overcast skies is captured across the Central Plains and Pacific Northwest.  Clear skies are 

evident offshore from California, with adequate partial cloudiness over the Atlantic Ocean.  

However, there is also cloudiness in areas that are evidently clear on satellite imagery and the 

blended sky cover analysis as depicted in Figure 33.  This is most evident over interior Mexico. 
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 Figure 37 is a four-panel plot showing histograms of the frequency of values on the 

respective domains plotted in Figure 33, Figure 34, Figure 35, and Figure 36.  Panel A of Figure 

37 shows the blended sky cover analysis distribution, with 39% of the domain covered by sky 

cover amounts of 90% or greater, with clear or nearly clear skies representing only 11% of the 

domain.  Sky cover amounts greater than or equal to 70% but less than 90% collectively 

represent 25% of the points on the domain, whereas other amounts between 10% and 70% are 

approximately evenly distributed.  This is in contrast to Panel B, which shows the NDFD total 

cloud cover one-hour forecast distribution.  For this distribution, the percentage of partly cloudy 

and mostly cloudy skies between 40% and 90% coverage are approximately evenly distributed, 

with a more significant number of nearly overcast or overcast skies with sky cover amounts of at 

least 90%.  Panel C confirms the distribution of the HRRR total cloud cover analysis that is 

suspected from Figure 35, with nearly even distribution between 10% and 90% coverage, and 

approximately balanced clear or nearly clear skies and overcast or nearly overcast skies.  Lastly, 

Panel D depicts the distribution of the HRRR optimal sky cover product with a substantially less 

amount of clear sky cover amounts compared to the HRRR total cloud cover analysis in Panel C, 

and with a distribution closer to Panels A and B, despite a somewhat bimodal appearance. 

 Figure 38 is a four-panel plot showing histograms of the difference of values between 

two grids where corresponding, non-missing values from two products are matched.  Panel A 

shows the distribution of values for the difference of the blended sky cover analysis from the 

HRRR total cloud cover analysis.  Panel B shows the distribution of the values for the difference 

of the blended sky cover analysis from the initial-hour HRRR optimal sky cover product.  

Comparing Panels A and B, a much smaller bias is noted for the initial-hour HRRR optimal sky 

cover product as opposed to HRRR total cloud cover analysis.  The mean error for the HRRR 
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total cloud cover analysis is -21.5% sky cover, compared to -5.4% sky cover for the HRRR 

optimal sky cover product, when both are validated against the blended analysis.  The same bias 

is noted when comparing the HRRR total cloud cover analysis and the HRRR optimal sky cover 

product to the NDFD total cloud cover one-hour forecast, as the difference histograms indicate in 

Panels C and D.  The mean error for the HRRR total cloud cover analysis is -16.3% sky cover, 

compared to -0.2% sky cover for the HRRR optimal sky cover product, when both are compared 

to the NDFD one-hour forecast.  In both validations, the mean error of the HRRR total cloud 

cover analysis is 16.1% sky cover less than the HRRR optimal sky cover product in this case. 

 Figure 39 shows the geographical areas where there is a difference between the HRRR 

optimal sky cover product and blended sky cover analysis.  The best performance is noted in 

clear and cloudy areas.  The worst performance occurs in areas where the cloud distribution is 

likely multi-layered, or the geographic distribution of cloud condensate is not adequately 

captured in the HRRR model during the pre-processing and analysis steps4.  One area of 

particularly poor performance, compared to the blended sky cover analysis, is in eastern 

Tennessee and western North Carolina.  In this case, the significant underestimation is the result 

of low relative humidity values over that geographic area within the fields chosen for the 

correlation.  The optimizer identified the 500 hPa, 900 hPa, and 950 hPa relative humidity fields 

as contributing to sky cover.  The optimizer also found that 1000 hPa relative humidity values 

above 94% contribute to the HRRR optimal sky cover product in this case.  High relative 

humidity values likely supported an overestimate of cloudiness over Nevada. 

 The comparison of the HRRR optimal sky cover product to the NDFD total cloud cover 

one-hour forecast, shown in Figure 40, demonstrates approximately the same issues.  Like in 
                                                
4 The initial analysis is typically recycled from the previous one-hour forecast (Benjamin 2013). 
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comparison to the blended sky cover analysis, overcast and clear skies are the areas where there 

is little difference between the HRRR optimal sky cover product and the NDFD total cloud cover 

one-hour forecast.  Furthermore, the HRRR optimal sky cover product is low in bias over 

Appalachia.  However, the difference is not as substantial over Nevada.  Over Wisconsin and 

Minnesota, there is both positive and negative bias.  Part of the cause for this bias, as well as the 

spatial variations, is likely a poor one-hour forecast or overall lack of predictability. 

6.    Results 

In this section, results from all of the completed primary and secondary model optimization runs 

between 1 UTC on 21 September 2013 and 23 UTC on 1 November 2013 are compiled and 

interpreted.  Results are arranged in three ways.  First, the characteristics of relationships of the 

tested quantities to sky cover throughout the test period are assessed.  Second, the behavior of 

quantities relative to others on individual levels is investigated.  Third, scores are compared for 

the HRRR optimal sky cover product and the legacy HRRR total cloud cover analysis when 

verified against the blended sky cover analysis and NDFD total cloud cover one-hour forecast. 

One strong benefit of the optimization approach, particularly with respect to the primary 

model, is that the output not only provides the best solution as sought through the objective 

function, but the solution of the variables related to the quantities provide insights.  Though it 

may seem fairly direct that cloud water mixing ratio and other condensates correlate strongly to 

cloud, the optimization procedure tests that assumption in part to validate the model analysis.  In 

past studies, indicators of cloud fraction were evaluated in a test atmosphere, or with data 

collected during the course of a field campaign.  But this discounts seasonal impacts and en 

masse application as the cloud scale transitions from sub-mesoscale to the mesoscale and 
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synoptic scale.  The optimization approach provides insight into which cloud-related fields have 

the best predictability, or at least which atmospheric quantity and level most closely match 

cloudy points.  In general, areas where a tested or incorporated field has a high value outside of a 

cloud deck are going to minimize the impact of that field on the solution.  The primary model 

generally treats each level of each quantity independently. 

Not all primary model formulations provided to the optimizer are solved in the 30-minute 

time allotted.  In addition, some models are unable to run because of a lack of input.  Usually the 

lack of input is the result of no HRRR model output.  The optimization models are run in real-

time beginning approximately two hours after the analysis time, usually as soon as the output 

from the corresponding HRRR model run is available.  It is important to not only look at how the 

contributing fields to the final solution are scaled, but also how frequently the field is used as a 

partial indicator of sky cover throughout multiple runs. 

There are two predominant types of correlations that are referenced.  A scalar correlation 

is one where for any non-zero value of the quantity, a non-zero scalar adjustment is provided to 

increase the overall value of sky cover at that point regardless of the magnitude of the non-zero 

field value it is applied to.  A coefficient correlation adjusts the distribution of the sky cover 

based on the distribution of the field to which the coefficient is applied.  A coefficient correlation 

adjusts spatial gradients. 

The quantities tested in this model are all expected to correlate with sky cover based on 

previous literature and implicit relationships.  This is necessary because the use of optimization 

models to determine relationships without an expectation of one can yield results without 

significant depth.  Particularly when it comes to optimization models with a large number of 

variables, the increase in variables also increases the number of potential solutions within the set.  
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It is possible to foresee scenarios in which random patterning may yield an acceptable solution if 

enough such spatial patterns are provided. 

Finally, there is a seasonal dependence of the correlations based on the formulation of the 

primary model.  This is demonstrated in the test period, where there is a seasonal transition from 

summer to fall.  In the summer months, cloud ice mixing ratio and snow mixing ratio are 

generally associated with areas of deep convection, which are difficult to predict with numerical 

models, and such quantities exist only in the upper troposphere.  In the winter months of the mid-

latitudes, clouds more frequently consist of ice, as snow becomes a dominant precipitation type, 

particularly over the northern half of the United States, and cloud ice mixing ratio and snow 

mixing ratio are more prevalent throughout the troposphere. 

a. Relative humidity 

Examining all of the runs within the period, coefficients to the relative humidity fields are 

the most frequent output from the end-to-end optimization procedure.  The mean value of the 

coefficient responsible for the correlation is highest at 300 hPa, excluding 1000 hPa, which has 

the added advantage of a threshold.  The mean value of the relative humidity field coefficient at 

each level is shown in Table 3.  In addition, correlation is most frequent at 300 hPa, with 

approximately 59% of the runs producing a non-zero coefficient.  Combining 200 hPa and 300 

hPa, a non-zero coefficient is produced in approximately 77% of the runs.  Looking at the related 

100% less relative humidity quantity, an indication of the degree of dryness, a 300 hPa 

coefficient is also most common.  This suggests that when there is cloudiness in this layer, 

relative humidity is correlated with it.  In areas where relative humidity values are small, the 

optimizer running the primary model decreases the degree of cloudiness. 
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Table 4 summarizes the frequency of at least one coefficient at each level, applied to 

either the relative humidity field or the 100% less relative humidity field.  The most reliable 

correlation, other than at 1000 hPa, is at 300 hPa, where at least one correlation occurs 

approximately 78% of the time, and both occur approximately 25% of the time.  The least 

common correlation is with 850 hPa, where a relative humidity coefficient or 100% less relative 

humidity coefficient is found in only 33% of the runs.  For 1000 hPa, all (100%) of the runs 

produce a non-zero relative humidity coefficient, non-zero 100% less relative humidity 

coefficient, or both, for values greater than the threshold. 

b. Cloud water mixing ratio 

Cloud water mixing ratio in the lower troposphere is also routinely correlated with sky 

cover where it exists.  Considering the runs during the demonstration, approximately 96% of the 

runs contained at least one non-zero coefficient for correlation to 800 hPa, 850 hPa, and 900 hPa 

cloud water mixing ratio.  The optimizer running the primary model produced a scalar 

adjustment in approximately the same percentage of runs, considering 800 hPa, 850 hPa, and 900 

hPa collectively.  This indicates that the spatial distribution of cloud water mixing ratio from the 

HRRR model is at least somewhat similar to sky cover.  This information is summarized in 

Table 5, which also indicates the mean value of the coefficient for cloud water mixing ratio at the 

specified levels incorporated into the primary model. 

The optimizer running the primary model found a coefficient or scalar correlation for the 

950 hPa cloud water mixing ratio field in approximately 97% of runs, and a coefficient or scalar 

correlation for the 900 hPa cloud water mixing ratio field in approximately 94% of runs.  In 

approximately two-thirds of the runs in the demonstration, the optimizer found a coefficient and 
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scalar adjustment for 950 hPa.  In fact, a coefficient or scalar correlation exists for over 80% of 

runs at 700 hPa, 800 hPa, and 850 hPa individually.  This information is summarized in Table 6. 

c. Cloud ice mixing ratio 

In contrast to cloud water mixing ratio, there is a lesser degree and consistency of 

correlation for the cloud ice mixing ratio quantity.  Mean values for the cloud ice mixing ratio 

coefficient are highest at 500 hPa, though there are only 30 such cases of a non-zero coefficient 

at that level, as shown in Table 7.  At 300 hPa, there are a much greater number of runs with a 

non-zero coefficient correlation for cloud ice mixing ratio, but the mean value is approximately 

an order of magnitude smaller.  Correlation between cloud ice mixing ratio and sky cover is most 

significantly noted at 300 hPa, not only judging the percentage of cases with a non-zero 

coefficient, but also the percentage of cases with a non-zero scalar.  This information is 

summarized in Table 8.  A coefficient or scalar is produced for non-zero 300 hPa cloud ice 

mixing ratio amounts in approximately 58% of all runs. 

d. Rain water mixing ratio 

Rain water mixing ratio is the variable least correlated with sky cover.  The mean value 

for the coefficient, as indicated in Table 9, does not show strong dependence to a level for those 

levels with a sufficient number of runs contributing to the mean.  For an individual level, 700 

hPa produced the greatest number of coefficient and scalar correlations.  However, one of the 

two only appeared at this level in 24% of model runs.  This information is summarized in Table 

10.  It is likely that the distribution and magnitude of rain water mixing ratio made it less ideal 

for correlation compared to other variables such as cloud water mixing ratio.  Areas with positive 

rain water mixing ratio are also areas that are most likely cloudy. 
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e. Snow mixing ratio 

The mean value for the snow mixing ratio coefficient at individual levels is 

approximately on par with values of rain water mixing ratio, as listed in Table 11, though the 

coefficient is somewhat smaller in magnitude when applied to the 300 hPa snow mixing ratio 

field values.  This suggests either a higher snow mixing ratio value at 300 hPa compared to the 

other levels, or more correlated levels or other quantities within the column to adjust the 

cloudiness when snow mixing ratio is present.  Snow mixing ratio as a quantity for correlation to 

sky cover did best in the middle troposphere, with approximately 45% of runs supporting a 

coefficient correlation at 500 hPa, and 59% of runs supporting a scalar correlation.  This 

information is summarized in Table 12.  Based on the demonstration period early in the fall 

months, the lack of correlation with sky cover in the lowest levels is not surprising. 

f. 200 hPa 

Figure 41 demonstrates the trend in the mean value of the coefficient applied to the 

relative humidity, condensate, and vorticity variables at 200 hPa.  There is little overall trend 

with time throughout the period.  Cloud water mixing ratio and rain water mixing ratio are 

missing because there is no correlation with these variables due to the lack of precipitating liquid 

cloud high in the troposphere in the HRRR model runs.  Figure 42 shows that the percentage of 

runs where the optimizer applied a non-zero coefficient to each field during the demonstration.  

Positive absolute vorticity is the most frequently correlated at 200 hPa, with a coefficient found 

in approximately 73% of runs, compared to a negative absolute vorticity coefficient produced in 

54% of runs.  Snow mixing ratio and cloud ice mixing ratio are the least correlated.  In the case 

of the latter two quantities, the limited correlation is likely due to the limited spatial coverage. 
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The mean value of the non-zero positive absolute vorticity coefficient at 200 hPa is 7.77 

× 104 %�s, while the mean value of the non-zero absolute negative vorticity coefficient at 200 

hPa is 2.60 × 107 %�s.  Because the negative vorticity coefficient is applied to a negative value, 

the coefficient works to decrease the sky cover amount.  The higher mean value of the absolute 

negative vorticity coefficient, by three orders of magnitude, is due to the smaller absolute mean 

value of negative absolute vorticity. 

g. 300 hPa 

The trend over time of relative humidity and condensate variables at 300 hPa is shown in 

Figure 43.  In general, the mean value of the non-zero coefficients is relatively steady over time.  

However, the percent of time over the demonstration in which they are non-zero is not as steady, 

as shown in Figure 44.  The most significant contributor to sky cover, at this level, is cloud ice 

mixing ratio.  The mean contribution of the cloud ice mixing ratio coefficient to sky cover at a 

point is approximately 19%.  This compares to the relative humidity coefficient and snow mixing 

ratio coefficient, each which contribute 7% on average to the sky cover at a point where the 

respective field value is non-zero. 

h. 500 hPa 

The trend over time of coefficients corresponding to relative humidity and condensate 

quantities at 500 hPa is shown in Figure 45.  In general, there is no discernable trend.  Some of 

the local trends on the plot are the result of a limited sample size.  Examining Figure 46, it is 

evident that early in the period, the optimizer found non-zero coefficients of cloud water mixing 

ratio and snow mixing ratio at approximately the same frequency.  Late in October, the 

frequency of a coefficient correlation with cloud water mixing ratio decreases, likely as a result 
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of cooler seasonal temperatures.  The distribution of cloud ice mixing ratio is not frequently 

correlated, likely due to the limited amount of cloud ice at 500 hPa.  In general, the lack of any 

field at 500 hPa significantly correlated with sky cover well over 50% indicates the lack of 

substantial skill in correlating with cloud in this layer. 

i. 700 hPa 

Figure 47 shows the steady trend of solved relative humidity and condensate coefficients 

correlated with sky cover at 700 hPa.  The degree of the contribution to sky cover, when the 

coefficient is non-zero, is about the same for cloud water mixing ratio, rain water mixing ratio, 

and snow mixing ratio at this level.  Based on the distribution of cloud water mixing ratio 

relative to sky cover, cloud water mixing ratio is the most significant contributor at 700 hPa, 

particularly late in the demonstration, as the trend in Figure 48 shows.  Cloud water mixing ratio 

contributes to the sky cover formulation with a regularity of better than 50% of runs, and the 

distribution of rain water mixing ratio contributes to sky cover in approximately 15% of runs. 

j. 800 hPa through 950 hPa 

Similar to 700 hPa, cloud water mixing ratio is the most dominant contributor for the 

lower tropospheric levels between 800 hPa and 950 hPa, with limited contribution from snow 

mixing ratio and cloud ice mixing ratio.  The steady trend of the mean non-zero coefficient value 

is shown in Figure 49 for 800 hPa, Figure 51 for 850 hPa, Figure 53 for 900 hPa, and Figure 55 

for 950 hPa.  The mean value cloud water mixing ratio is lowest overall at 850 hPa despite the 

lack of other routine predictors.  At 800 hPa and 850 hPa, the most frequent contributor to sky 

cover is cloud water mixing ratio, as indicated in Figure 50 and Figure 52, respectively, though 

the frequency of the contribution is somewhat variable at between approximately 50% and 80% 
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of the runs.  At 900 hPa and 950 hPa, there is a marked increase in the frequency of the 

contribution of cloud water mixing ratio to sky cover, as indicated in Figure 54 and Figure 56, 

respectively.  This suggests that low, liquid cloud is amongst the most predictable fields using 

the HRRR model.  Another conclusion evident in the data is that the 950 hPa cloud water mixing 

ratio is the strongest routine contributor to sky cover across all variables at all levels. 

There is also a contribution to sky cover from relative humidity at 950 hPa at a greater 

value than the other lower levels.  At 950 hPa, relative humidity factors into the sky cover 

formulation for greater than 30% of runs in the demonstration.  Despite that, the mean value of 

the contribution is not notably more substantial than at the other levels. 

k. 1000 hPa 

Unlike at the other levels, at 1000 hPa, the primary optimization model allows a 

coefficient and scalar to correlate to relative humidity above a threshold.  The primary 

optimization model allows for a range of relative humidity values between 0% and the threshold 

for which there is no contribution to the final sky cover.  The purpose of the implementation is to 

allow for sharp gradients in 1000 hPa relative humidity to correlate with cloud edges.  There are 

some regimes where this is useful, particularly in marine environments, which provide perpetual 

challenges due to the typically dry troposphere above a relatively shallow cloud deck, and 

against terrain boundaries. 

Figure 57 shows the trend in the mean value of the non-zero coefficient when correlated 

to relative humidity, cloud water mixing ratio, and rain water mixing ratio.  Compared to 950 

hPa, there is no significant change to the mean value or the trend of the optimizer solution for 

condensate variables throughout the demonstration.  However, the mean value of the relative 



63 

humidity coefficient is higher than evident at other levels.  This coefficient is only applied above 

a certain threshold, and Figure 58 shows the trend in the frequency of a non-zero coefficient over 

all runs for relative humidity, cloud water mixing ratio, and rain water mixing ratio during the 

demonstration.  The trend in the mean threshold is depicted in Figure 59.  On average, the 

threshold is approximately 70% or greater; the mean value is 73.3%. 

l. Overall performance 

Metrics for judging performance of this approach include mean error, MAE, and root-

mean-square error (RMSE).  Validated against the optimal sky cover analysis over the 

continental United States, the adaptive optimizer solution, produced from the primary model and 

secondary model, is a consistent outperformer of the current operational cloud cover output from 

the HRRR model.  However, it is evident that the degree and trend of the error over time is 

similar.  This suggests that part of the reason for the error is in fact a deficiency in the skill of the 

NWP model itself.  That is, the placement of the atmospheric parameters necessary for 

diagnosing cloud is not always accurate. 

That given, the MAE and mean error are closer to zero for the HRRR optimal sky cover 

product compared to the routine HRRR total cloud cover analysis.  For the initial-hour HRRR 

optimal sky cover product, the mean error over 793 runs within the aforementioned test window, 

but beginning at 0 UTC, using the blended sky cover analysis as truth, is -7.6% sky cover, MAE 

is 17.5% sky cover, and RMSE is 26.5% sky cover.  This compares to the HRRR total cloud 

cover analysis, where the mean error over 823 runs within the same test window, using the 

blended sky cover analysis as truth, is -13.1% sky cover, MAE is 17.3% sky cover, and RMSE is 

27.2% sky cover.  The difference in the number of compared runs is a result of data availability.  
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While the mean error for the HRRR optimal sky cover is markedly less, the other metrics do not 

indicate substantial improvement.  This suggests that both the HRRR optimal sky cover product 

and the legacy total cloud cover analysis suffer from significant differences for some points, 

despite the HRRR optimal sky cover product slightly more balanced in bias for some of those 

differences.  In addition, much of the competitive performance of the HRRR total cloud cover 

analysis is likely due to the expansive clear area. 

 Examining the three-hour forecast of the HRRR total cloud cover quantity and the HRRR 

optimal sky cover product, a different result is realized.  For the three-hour forecast of the HRRR 

optimal sky cover product, the mean error over 784 runs where the output is valid within the 

same test window beginning at 0 UTC, using the blended sky cover analysis as truth, is -9.6% 

sky cover, MAE is 20.3% sky cover, and RMSE is 30.0% sky cover.  This compares to the 

HRRR total cloud cover three-hour forecast, where the mean error over 810 runs and the output 

is valid within the same test window, using the blended sky cover analysis as truth, is -12.4% sky 

cover, MAE is 23.9% sky cover, and RMSE is 35.7% sky cover.  Similar results are evident in 

comparing the six-hour and nine-hour forecasts.  This suggests that predictability increases using 

the optimization approach in the near-term forecast range.  That is, the HRRR model has better 

skill for sky cover than the current total cloud cover formulation allows it to. 

Using the NDFD one-hour forecast as truth, the mean error of the initial-hour HRRR total 

cloud cover analysis over 281 runs is -11.9% sky cover, MAE is 20.6% sky cover, and RMSE is 

28.4% sky cover.  The mean error of the initial-hour HRRR optimal sky cover product over 270 

runs is -6.4% sky cover, MAE is 16.1% sky cover, and RMSE is 22.4% sky cover.  For all 

metrics, the initial-hour HRRR optimal sky cover product is the best performer.  The initial-hour 

HRRR optimal cloud cover product is much more competitive due to the lack of the significant 
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clear areas in the NDFD one-hour forecast.  In addition, performance is better in part because the 

input into the optimizer is optimized and therefore adjusted to minimize MAE compared to the 

NDFD one-hour forecast.  However, despite the adequate performance, the skill scores for the 

optimizer output prove a bit more variable than the routine model output, despite attempts to 

constrain the optimizer from returning solutions that did not match the nature of the input data. 

The probability of detection (POD) metrics for clear skies, less than or equal to 5% 

coverage, and cloudy skies, greater than or equal to 95% coverage, are also examined in 

assessing skill.  The routine and optimal HRRR analyses are compared to the blended analysis 

and NDFD one-hour forecast as truth.  For both validating analyses, due to the bias of the routine 

HRRR total cloud cover analysis to underrepresent cloud, the routine output did regularly prove 

more adequate in compared POD metrics for clear skies.  However, considering the POD metrics 

for cloudy skies, the HRRR optimal sky cover product is generally better at capturing such 

conditions. 

m. Shear and curvature vorticity 

The performance of a change to the 200 hPa vorticity terms in the primary optimization 

model is assessed to further the inquiry on the relationship between vorticity and clouds.  The 

primary model contains two vorticity terms, one term containing 200 hPa positive absolute 

vorticity values, with zero otherwise, and the other term containing 200 hPa negative absolute 

vorticity values, with zero otherwise.  The primary model contains four vorticity terms after the 

revision, where two terms are 200 hPa positive relative vorticity, and the other two are 200 hPa 

negative relative vorticity.  At each grid point, relative vorticity is split into a shear vorticity 

component and a curvature vorticity component, consistent with Bell and Keyser (1993).  There 
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are 19 cases examined between 6 UTC on 29 October 2013 and 6 UTC on 13 November 2013.  

For these cases, the impact of this change on the MAE is mixed.  While there are some cases 

where the additional vorticity variables prove beneficial in decreasing the MAE, there are also a 

number of cases where the MAE increased.  More importantly, there is no evidence of any 

consistent correlation between the positive shear and curvature vorticity terms, and sky cover, 

though a coefficient for negative curvature vorticity appears to occur more frequently in the 

optimizer output, to decrease cloud cover, than negative shear vorticity, for the limited number 

of cases. 

7.    Conclusion 

The work conducted here forms the initial basis for understanding sky cover and quantifying it in 

a routine manner using an approach which balances observations from both terrestrial and space-

based observing systems.  Beyond formalizing sky cover as a quantity with value in scientific 

studies, this work examines how the forecast of short-term cloud and moisture quantities in NWP 

models can improve.  It also provides an avenue through which to conduct subsequent validation 

studies of clouds in models.  It is evident that cloud and moisture quantities contribute to the 

cloud and sky cover output that models provide.  Compared to the blended sky cover analysis, 

the optimizer produces a sky cover analysis and short-term forecasts which are better than what 

the HRRR model currently outputs using the Xu and Randall (1996) formulation.  The added 

benefit of the optimization approach is the additional information provided about the relative 

relationships between different HRRR model quantities. 

The optimization approach reveals strong correlations between cloud water mixing ratio 

and sky cover at 950 hPa and 1000 hPa, as well as correlations between relative humidity and 
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sky cover at almost all tested levels.  This result demonstrates the predictability of low cloud but 

continues to suggest challenges for resolving middle and upper tropospheric cloud.  Furthermore, 

the sky cover approach demonstrated here is a more realistic representation of the cloudiness 

problem because it provides a more consistent field when individual clouds are on a smaller 

scale than are resolved using satellites and grid-based numerical models. 

One natural extension of this research is to assimilate the optimal sky cover back into the 

model for the subsequent time step.  For a real-time weather model, this may prove difficult on 

all but the highest-performing supercomputers due to the amount of time required to solve even a 

basic formulation of an optimization problem.  An additional challenge includes assessing where 

to place the clouds vertically within the model.  A significant error in the height placement has 

the potential to substantially alter the NWP model’s water and energy budgets at some grid 

points, which could prove detrimental as the model executes for subsequent time steps. 

There is the potential for several subsequent avenues of research related to the creation of 

the analysis.  One such potential avenue is adding further logic to the blended sky cover analysis 

for handling low cloud trapped as a result of terrain.  Low cloud in river valleys is spatially 

evident in visible satellite imagery when not obscured with high-level cloudiness.  A high-

resolution topographical dataset could prove valuable in checking the elevation of surface 

stations and parent grid cells against adjacent grid cells to determine the likelihood of cloudiness 

beyond the parent grid cell through the spatial gradients in the dew point depression and wind 

regime.  There are similar applications that may apply to stratiform cloudiness at the top of the 

marine boundary layer. 

It is also possible to apply optimization to solve other problems in the atmospheric 

sciences where existing theory does not provide a clear path forward, relationships are assumed, 
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and better relationships between observable quantities are sought.  Thunderstorm predictability is 

one such area.  This could ultimately lead to additional blended products and predictions that are 

a part of an operational meteorologist’s toolbox. 

 Despite consistently weak relationships between the value of relative humidity and the 

extent of cloud cover, as shown in previous literature and through this work, there is likely no 

abandoning parameterizations using relative humidity for real-time weather models until 

computer performance improves even more to allow for better resolution of turbulent processes 

behind individual clouds.  To this end, it is important to see advancements not only in data 

assimilations and parameterizations, but also to maintain the integrity of our observational 

platforms.  There are exciting new observing capabilities available and coming soon that have 

the possibility to assist with longstanding challenges.  For example, nighttime visible imagery 

courtesy of the day-night band on the Suomi National Polar-orbiting Partnership (NPP) satellite 

is providing opportunities for nocturnal cloud detection with reflected sunlight from the moon.  

The active lidar instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 

Observation (CALIPSO) satellite has the potential to help with cloud detection and resolving the 

height of multiple cloud decks in multi-layer cloud regimes. 

As future weather satellites increase our clarity of cloudiness, the dexterity of the blended 

sky cover analysis can only increase.  This will provide subsequent opportunities not only to 

learn about cloud impacts and feedbacks on short-term and climatic time scales, but also help to 

improve numerical models and their parameterizations.  Combined with techniques such as 

optimization, it is possible to find and test assumptions, and bring confidence to existing 

relationships that are known to the field.  This study is a first step in demonstrating such a 

concept. 
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Tables 
 
Satellite 
Observation at 
Test Point 

Satellite 
Observation at 
Closest Surface 
Station 

Surface 
Observation at 
Closest Site 

Blended Result Deference 

Clear Clear Clear Clear Both 
Clear Clear Cloudy Cloudy Surface 
Clear Cloudy Clear Clear Satellite 
Clear Cloudy Cloudy Clear Satellite 
Cloudy Clear Clear Cloudy Satellite 
Cloudy Clear Cloudy Cloudy Both 
Cloudy Cloudy Clear Cloudy Satellite 
Cloudy Cloudy Cloudy Cloudy Both 
Table 1.  This table summarizes the logic for comparing a grid point containing a satellite observation of sky cover 
to a like in-situ surface observation nearby with a collocated satellite observation.  A cloudy point is one that is not 
clear.  The point result for the blended sky cover analysis appears in the second to rightmost column.  Deference of 
the case result to the observing platform is noted in the rightmost column. 
 
Level Number of occurrences Percentage of all runs 
None 446 54.1% 
200 hPa 113 13.7% 
300 hPa 59 7.2% 
500 hPa 58 7.0% 
700 hPa 33 4.0% 
800 hPa 37 4.5% 
850 hPa 24 2.9% 
900 hPa 19 2.3% 
950 hPa 24 2.9% 
1000 hPa 11 1.3% 
Table 2.  This table contains a summary of the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The number of runs for which the relative humidity field at the level 
listed in the leftmost column is used through the secondary model to adjust the result in part or in full from the 
primary model is shown in the middle column.  The percentage in the rightmost column is the frequency of 
occurrence out of 824 runs in the time window.  The “None” row is an adjustment based purely on the output from 
the primary model with no filtering based on a relative humidity field. 
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Rel. Hum. Coefficient (RH) Coefficient (100-RH) 
Level Mean Number Percentage Mean Number Percentage 
200 hPa 0.254 340 636 41.3% 77.2% -0.189 174 463 21.1% 56.2% 
300 hPa 0.270 485 58.9% -0.228 359 43.6% 
500 hPa 0.221 440  53.4%  -0.166 304  36.9%  
700 hPa 0.174 320  38.8%  -0.153 222  26.9%  
800 hPa 0.155 232 540 28.2% 65.5% -0.130 153 406 18.6% 49.3% 
850 hPa 0.156 186 22.6% -0.128 128 15.5% 
900 hPa 0.184 295 35.8% -0.182 209 25.4% 
950 hPa 0.229 351 513 42.6% 62.3% -0.209 274  33.3%  
1000 hPa 0.386 296 35.9% NA NA NA NA NA 
Table 3.  This table contains a summary of the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The coefficient referenced in leftmost columns two through six, is the 
multiplier applied to the relative humidity (RH) field value at each grid point, in units of %/%.  The coefficient 
reference in the rightmost five columns is the multiplier applied to the 100% less relative humidity (100-RH) field 
value at each grid point, in units of %/%.  The means are calculated from all non-zero values.  The number 
represents the number of runs that the optimizer found a non-zero coefficient, and the percentage is the frequency of 
occurrence out of 824 runs in the time window.  Where the column is split across multiple rows, the number or 
percentage is calculated based one whether at least one of the covered levels is non-zero.  The model is not designed 
to calculate a coefficient for the 100% less relative humidity field value at 1000 hPa. 
 
Rel. Hum. At least one coefficient (RH, 100-RH) Two coefficients (RH, 100-RH) 
Level Number Percentage Number Percentage 
200 hPa 416 50.5% 98 11.9% 
300 hPa 640 77.7% 204 24.8% 
500 hPa 602 73.1% 142 17.2% 
700 hPa 473 57.4% 69 8.4% 
800 hPa 336 40.8% 49 5.9% 
850 hPa 272 33.0% 42 5.1% 
900 hPa 410 49.8% 94 11.4% 
950 hPa 500 60.7% 125 15.2% 
Rel. Hum. Coefficient or Scalar Coefficient and Scalar 
Level Number Percentage Number Percentage 
1000 hPa 824 100.0% 134 16.3% 
Table 4.  This table contains a summary of the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  For levels between 200 hPa and 950 hPa, the second column from the 
left contains the number of runs in which the optimizer found a non-zero coefficient for application to the relative 
humidity (RH) field values, 100% less relative humidity (100-RH) field values, or both, at the respective levels in 
the leftmost column.  For those same levels, the number of cases in which the optimizer returned a non-zero 
coefficient for the quantities of relative humidity (RH) and 100% less relative humidity (100-RH) is listed in the 
fourth column.  The third and fifth columns contain a percentage representing the frequency of occurrence out of 
824 runs in the time window, based on the number in the column immediately to its left.  For 1000 hPa, the second 
column from the left contains the number of runs in which the optimizer found a non-zero coefficient or scalar for 
application to the relative humidity field values.  Cases in which the optimizer returned both a non-zero coefficient 
and non-zero scalar for the same run, counted exclusively in the fourth column, are also included in the number.  
These coefficients and scalars are only applied above a certain threshold, as defined by the optimizer during the 
execution of each run.  
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Cl. Water Coefficient Scalar 
Level Mean Number Percentage Mean Number Percentage 
200 hPa NA 0 0 0.0% 0.0% NA 0 0 0.0% 0.0% 
300 hPa NA 0 0.0% NA 0 0.0% 
500 hPa 4.60 × 105 246  29.9%  8.8 270  32.8%  
700 hPa 2.41 × 105 542  65.8%  8.2 583  70.8%  
800 hPa 1.75 × 105 540 792 65.5% 96.1% 7.0 520 790 63.1% 95.9% 
850 hPa 1.22 × 105 484 58.7% 7.1 509 61.8% 
900 hPa 1.38 × 105 629 76.3% 8.2 649 78.8% 
950 hPa 2.33 × 105 758 779 92.0% 94.5% 7.8 608 677 73.8% 82.2% 
1000 hPa 2.45 × 105 277 33.6% 9.3 294 35.7% 
Table 5.  This table contains a summary of the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The coefficient is the multiplier applied to the cloud water mixing ratio 
field value at each grid point, in units of %�kg/kg.  The scalar is the value added to the non-zero cloud water mixing 
ratio field value at each grid point, regardless of its magnitude, in units of %.  The means are calculated from all 
non-zero values.  The number represents the number of runs that the optimizer found a non-zero coefficient or 
scalar, and the percentage is the frequency of occurrence out of 824 runs in the time window.  Where the column is 
split across multiple rows, the number or percentage is calculated based one whether at least one of the covered 
levels is non-zero.  The notation “NA” indicates the lack of output to use in calculating the mean. 
 
Cl. Water Coefficient or Scalar Coefficient and Scalar 
Level Number Percentage Number Percentage 
200 hPa 0 0.0% 0 0.0% 
300 hPa 0 0.0% 0 0.0% 
500 hPa 344 41.7% 172 20.9% 
700 hPa 708 85.9% 417 50.6% 
800 hPa 721 87.5% 339 41.1% 
850 hPa 691 83.9% 302 36.7% 
900 hPa 775 94.1% 503 61.0% 
950 hPa 800 97.1% 566 68.7% 
1000 hPa 324 39.3% 247 30.0% 
Table 6.  This table contains a summary of the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The second column from the left contains the number of runs in which 
the optimizer found a non-zero coefficient or scalar for application to the cloud water mixing ratio field values at the 
respective levels in the leftmost column.  Cases in which the optimizer returned both a non-zero coefficient and non-
zero scalar for the same run, counted exclusively in the fourth column, are also included in the number.  The third 
and fifth columns contain a percentage representing the frequency of occurrence out of 824 runs in the time window, 
based on the number in the column immediately to its left. 
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Cloud Ice Coefficient Scalar 
Level Mean Number Percentage Mean Number Percentage 
200 hPa 5.27 × 106 115 427 14.0% 51.8% 9.2 107 417 13.0% 50.7% 
300 hPa 4.21 × 106 389 47.2% 9.3 391 47.5% 
500 hPa 1.08 × 107 30  3.6%  12.5 26  3.2%  
700 hPa 7.19 × 106 83  10.1%  11.0 72  8.7%  
800 hPa 7.24 × 106 89 130 10.8% 15.8% 10.5 81 111 9.8% 13.5% 
850 hPa 4.99 × 106 71 8.6% 9.9 46 5.6% 
900 hPa 2.88 × 106 7 0.8% 11.8 4 0.5% 
950 hPa NA 0 0 0.0% 0.0% NA 0 0 0.0% 0.0% 
1000 hPa NA 0 0.0% NA 0 0.0% 
Table 7.  This table contains a summary of the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The coefficient is the multiplier applied to the cloud ice mixing ratio 
field value at each grid point, in units of %�kg/kg.  The scalar is the value added to the non-zero cloud ice mixing 
ratio field value at each grid point, regardless of its magnitude, in units of %.  The means are calculated from all 
non-zero values.  The number represents the number of runs that the optimizer found a non-zero coefficient or 
scalar, and the percentage is the frequency of occurrence out of 824 runs in the time window.  Where the column is 
split across multiple rows, the number or percentage is calculated based one whether at least one of the covered 
levels is non-zero.  The notation “NA” indicates the lack of output to use in calculating the mean. 
 
Cloud Ice Coefficient or Scalar Coefficient and Scalar 
Level Number Percentage Number Percentage 
200 hPa 150 18.2% 72 8.7% 
300 hPa 482 58.5% 298 36.2% 
500 hPa 40 4.9% 16 1.9% 
700 hPa 96 11.7% 59 7.2% 
800 hPa 98 11.9% 72 8.7% 
850 hPa 77 9.3% 40 4.9% 
900 hPa 7 0.8% 4 0.5% 
950 hPa 0 0.0% 0 0.0% 
1000 hPa 0 0.0% 0 0.0% 
Table 8.  This table contains a summary of the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The second column from the left contains the number of runs in which 
the optimizer found a non-zero coefficient or scalar for application to the cloud ice mixing ratio field values at the 
respective levels in the leftmost column.  Cases in which the optimizer returned both a non-zero coefficient and non-
zero scalar for the same run, counted exclusively in the fourth column, are also included in the number.  The third 
and fifth columns contain a percentage representing the frequency of occurrence out of 824 runs in the time window, 
based on the number in the column immediately to its left. 
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Rain Coefficient Scalar 
Level Mean Number Percentage Mean Number Percentage 
200 hPa NA 0 0 0.0% 0.0% NA 0 0 0.0% 0.0% 
300 hPa NA 0 0.0% NA 0 0.0% 
500 hPa 7.32 × 105 2  0.2%  10.3 2  0.2%  
700 hPa 2.66 × 105 121  14.7%  7.0 155  18.8%  
800 hPa 2.48 × 105 91 144 11.0% 17.5% 6.6 139 273 16.9% 33.1% 
850 hPa 2.93 × 105 64 7.8% 5.7 103 12.5% 
900 hPa 3.11 × 105 50 6.1% 5.2 117 14.2% 
950 hPa 2.51 × 105 56 124 6.8% 15.0% 6.3 98 199 11.9% 24.2% 
1000 hPa 2.91 × 105 102 12.4% 6.5 141 17.1% 
Table 9.  This table contains a summary of the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The coefficient is the multiplier applied to the rain water mixing ratio 
field value at each grid point, in units of %�kg/kg.  The scalar is the value added to the non-zero rain water mixing 
ratio field value at each grid point, regardless of its magnitude, in units of %.  The means are calculated from all 
non-zero values.  The number represents the number of runs that the optimizer found a non-zero coefficient or 
scalar, and the percentage is the frequency of occurrence out of 824 runs in the time window.  Where the column is 
split across multiple rows, the number or percentage is calculated based one whether at least one of the covered 
levels is non-zero.  The notation “NA” indicates the lack of output to use in calculating the mean. 
 
Rain Coefficient or Scalar Coefficient and Scalar 
Level Number Percentage Number Percentage 
200 hPa 0 0.0% 0 0.0% 
300 hPa 0 0.0% 0 0.0% 
500 hPa 2 0.2% 2 0.2% 
700 hPa 194 23.5% 82 10.0% 
800 hPa 188 22.8% 42 5.1% 
850 hPa 140 17.0% 27 3.3% 
900 hPa 144 17.5% 23 2.8% 
950 hPa 131 15.9% 23 2.8% 
1000 hPa 182 22.1% 61 7.4% 
Table 10.  This table contains a summary of the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The second column from the left contains the number of runs in which 
the optimizer found a non-zero coefficient or scalar for application to the rain water mixing ratio field values at the 
respective levels in the leftmost column.  Cases in which the optimizer returned both a non-zero coefficient and non-
zero scalar for the same run, counted exclusively in the fourth column, are also included in the number.  The third 
and fifth columns contain a percentage representing the frequency of occurrence out of 824 runs in the time window, 
based on the number in the column immediately to its left. 
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Snow Coefficient Scalar 
Level Mean Number Percentage Mean Number Percentage 
200 hPa 8.49 × 104 62 243 7.5% 29.5% 9.6 72 431 8.7% 52.3% 
300 hPa 9.61 × 104 206 25.0% 7.8 406 49.3% 
500 hPa 9.78 × 104 270  32.8%  8.4 466  56.6%  
700 hPa 2.12 × 105 372  45.1%  10.2 484  58.7%  
800 hPa 3.43 × 105 192 262 23.3% 31.8% 10.5 242 341 29.4% 41.4% 
850 hPa 3.86 × 105 105 12.7% 9.9 134 16.3% 
900 hPa 4.23 × 105 73 8.9% 9.6 116 14.1% 
950 hPa 5.43 × 105 60 60 7.3% 7.3% 8.7 61 61 7.4% 7.4% 
1000 hPa NA 0 0.0% NA 0 0.0% 
Table 11.  This table contains a summary of the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The coefficient is the multiplier applied to the snow mixing ratio field 
value at each grid point, in units of %�kg/kg.  The scalar is the value added to the non-zero snow mixing ratio field 
value at each grid point, regardless of its magnitude, in units of %.  The means are calculated from all non-zero 
values.  The number represents the number of runs that the optimizer found a non-zero coefficient or scalar, and the 
percentage is the frequency of occurrence out of 824 runs in the time window.  Where the column is split across 
multiple rows, the number or percentage is calculated based one whether at least one of the covered levels is non-
zero.  The notation “NA” indicates the lack of output to use in calculating the mean. 
 
Snow Coefficient or Scalar Coefficient and Scalar 
Level Number Percentage Number Percentage 
200 hPa 95 11.5% 39 4.7% 
300 hPa 445 54.0% 167 20.3% 
500 hPa 540 65.5% 196 23.8% 
700 hPa 577 70.0% 279 33.9% 
800 hPa 314 38.1% 120 14.6% 
850 hPa 177 21.5% 62 7.5% 
900 hPa 140 17.0% 49 5.9% 
950 hPa 79 9.6% 42 5.1% 
1000 hPa 0 0.0% 0 0.0% 
Table 12.  This table contains a summary of the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The second column from the left contains the number of runs in which 
the optimizer found a non-zero coefficient or scalar for application to the snow mixing ratio field values at the 
respective levels in the leftmost column.  Cases in which the optimizer returned both a non-zero coefficient and non-
zero scalar for the same run, counted exclusively in the fourth column, are also included in the number.  The third 
and fifth columns contain a percentage representing the frequency of occurrence out of 824 runs in the time window, 
based on the number in the column immediately to its left. 
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Figures 
 

 
Figure 1.  This figure depicts the infrared window satellite image from GOES-East valid at 11:02 UTC on 20 
October 2013.  A traditional enhancement is applied to the satellite image.  Cold cloud tops are white. 
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Figure 2.  This figure depicts the composite geostationary satellite effective cloud amount analysis, in units of 
percent (%) effective emissivity, at 11:00 UTC on 20 October 2013.  Cloudy areas are in cyan.  The infrared 
window satellite image from GOES-East in the background is valid at 11:02 UTC on 20 October 2013.  A 
traditional enhancement is applied to the satellite image.  Cold cloud tops are white.  The overlay is partially 
transparent, except clear areas, which are not filled. 
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Figure 3.  This figure depicts the composite geostationary satellite cloud top pressure analysis, in units of hPa, at 
11:00 UTC on 20 October 2013.  Low clouds, with heights below 800 hPa, are in orange and brown, mid-level 
clouds, with heights between 800 hPa and 500 hPa, are in shades of red, and high clouds, with heights above 500 
hPa, are in shades of magenta.  The infrared window satellite image from GOES-East in the background is valid at 
11:02 UTC on 20 October 2013.  A traditional enhancement is applied to the satellite image.  Cold cloud tops are 
white.  The overlay is partially transparent, except clear areas, which are not filled. 
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Figure 4.  This figure depicts the composite geostationary satellite celestial dome effective cloud amount analysis, in 
units of percent (%) sky cover, at 11:00 UTC on 20 October 2013.  Overcast areas are in blue.  The infrared window 
satellite image from GOES-East in the background is valid at 11:02 UTC on 20 October 2013.  A traditional 
enhancement is applied to the satellite image.  Cold cloud tops are white.  The overlay is partially transparent, 
except clear areas, which are not filled. 
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Figure 5.  This figure depicts the composite geostationary satellite sky cover product, in units of percent (%) sky 
cover, for the one-hour window beginning at 11:00 UTC on 20 October 2013.  Overcast areas are in blue.  The 
infrared window satellite image from GOES-East in the background is valid at 11:02 UTC on 20 October 2013.  A 
traditional enhancement is applied to the satellite image.  Cold cloud tops are white.  The overlay is partially 
transparent, except clear areas, which are not filled. 
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Figure 6.  This figure depicts all automated and manned surface observing stations and their sky cover report, in 
units of percent (%) sky cover, for the one-hour window beginning at 11:00 UTC on 20 October 2013.  Overcast 
areas are in blue.  The infrared window satellite image from GOES-East in the background is valid at 11:02 UTC on 
20 October 2013.  A traditional enhancement is applied to the satellite image.  Cold cloud tops are white. 
  



86 

 
Figure 7.  This figure depicts the blended sky cover analysis, in units of percent (%) sky cover, for the one-hour 
window beginning at 11:00 UTC on 20 October 2013.  Overcast areas are in blue.  The infrared window satellite 
image from GOES-East in the background is valid at 11:02 UTC on 20 October 2013.  A traditional enhancement is 
applied to the satellite image.  Cold cloud tops are white.  The overlay is partially transparent, except clear areas, 
which are not filled. 
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Figure 8.  All of the histograms in this four-panel plot are valid for the one-hour window beginning at 11:00 UTC on 
20 October 2013, except Panel A, which is valid at the top of the hour.  Each histogram shows the frequency at 
which the value range, as indicated on the abscissa, occurs among all non-missing points in the indicated product.  
Each increment includes the range of values greater than or equal to the value to the left of the column and less than 
the value to the right of the column, except for the rightmost bin, which includes points with a value of 100%.  The 
left ordinate axis indicates the frequency in terms of the number of points.  The right ordinate axis indicates the 
percentage of the frequency compared to all non-missing points.  This percentage also appears immediately above 
each bar.  Panel A depicts the distribution for the composite geostationary satellite celestial dome effective cloud 
amount analysis.  Panel B depicts the distribution for the composite geostationary satellite sky cover product.  Panel 
C depicts the distribution for the surface sky observations.  Panel D depicts the distribution for the blended sky 
cover analysis. 
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Figure 9.  All of the panels in this plot are valid for the one-hour window beginning at 11:00 UTC on 20 October 
2013.  Panel A is a scatterplot with the composite geostationary satellite sky cover product on the abscissa and the 
blended sky cover analysis on the ordinate.  Collocated points are plotted according to their value, in units of percent 
(%) sky cover, on each axis.  Panel B is a binned density plot of Panel A.  Panel C is a scatterplot with the composite 
geostationary satellite sky cover product on the abscissa and surface observations of sky cover on the ordinate.  Both 
have units of percent (%) sky cover.  Panel D is a histogram showing the occurrence frequency of the difference of 
the blended sky cover analysis from the composite geostationary satellite sky cover product between collocated, 
non-missing points within the increments as indicated on the abscissa.  Each increment includes the range of values 
greater than or equal to the value to the left of the column, if present, and less than the value to the right of the 
column, if present.  The left ordinate axis indicates the frequency in terms of the number of points.  The right 
ordinate axis indicates the percentage of the frequency compared to all non-missing differenced points.  This 
percentage also appears immediately above each bar. 
  

A  B 
 

C  D 



89 

 
Figure 10.  This figure of the difference of the blended sky cover analysis from the composite geostationary satellite 
sky cover product, in units of percent (%) sky cover, is valid for the one-hour window beginning at 11:00 UTC on 
20 October 2013.  Blue shades indicate a negative difference, where the blended sky cover analysis value for the 
shaded point is greater than the corresponding sky cover product value; red shades indicate a positive difference, 
where the sky cover product value for the shaded point is greater than the corresponding blended sky cover analysis 
value. 
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Figure 11.  This figure depicts the optimal sky cover analysis, in units of percent (%) sky cover, for the one-hour 
window beginning at 11:00 UTC on 20 October 2013.  Overcast areas are in blue.  The infrared window satellite 
image from GOES-East in the background is valid at 11:02 UTC on 20 October 2013.  A traditional enhancement is 
applied to the satellite image.  Cold cloud tops are white.  The overlay is partially transparent, except clear areas, 
which are not filled. 
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Figure 12.  The two panels in this plot are valid for the one-hour window beginning at 11:00 UTC on 20 October 
2013.  The left panel is a scatterplot with the optimal sky cover analysis on the abscissa and blended sky cover 
analysis on the ordinate.  Both have units of percent (%) sky cover.  The right panel is a histogram showing the 
occurrence frequency of the difference of the blended sky cover analysis from the optimal sky cover analysis 
between collocated, non-missing points within the increments as indicated on the abscissa.  Each increment includes 
the range of values greater than or equal to the value to the left of the column, if present, and less than the value to 
the right of the column, if present.  The left ordinate axis indicates the frequency in terms of the number of points.  
The right ordinate axis indicates the percentage of the frequency compared to all non-missing differenced points.  
This percentage also appears immediately above each bar. 
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Figure 13.  This figure of the difference of the blended sky cover analysis from the optimal sky cover analysis, in 
units of percent (%) sky cover, is valid for the one-hour window beginning at 11:00 UTC on 20 October 2013.  Blue 
shades indicate a negative difference, where the blended sky cover analysis value for the shaded point is greater than 
the corresponding optimal sky cover analysis value; red shades indicate a positive difference, where the optimal sky 
cover analysis value for the shaded point is greater than the corresponding blended sky cover analysis value. 
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Figure 14.  This figure depicts the visible satellite image from GOES-East valid at 18:25 UTC on 4 October 2013.  
A traditional enhancement is applied to the satellite image.  Clouds are white. 
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Figure 15.  This figure depicts the blended sky cover analysis, in units of percent (%) sky cover, for the one-hour 
window beginning at 18:00 UTC on 4 October 2013.  Overcast areas are in blue.  The infrared window satellite 
image from GOES-East in the background is valid at 18:25 UTC on 4 October 2013.  A traditional enhancement is 
applied to the satellite image.  Cold cloud tops are white.  The overlay is partially transparent, except clear areas, 
which are not filled. 
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Figure 16.  This figure depicts the NDFD total cloud cover one-hour forecast, in units of percent (%) sky cover, for 
the one-hour window beginning at 18:00 UTC on 4 October 2013.  Overcast areas are in blue.  The infrared window 
satellite image from GOES-East in the background is valid at 18:25 UTC on 4 October 2013.  A traditional 
enhancement is applied to the satellite image.  Cold cloud tops are white.  The overlay is partially transparent, 
except clear areas, and areas outside of the domain, which are not filled. 
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Figure 17.  This figure depicts the HRRR total cloud cover analysis, in units of percent (%) cloud cover, valid at 
18:00 UTC on 4 October 2013.  Overcast areas are in blue.  The infrared window satellite image from GOES-East in 
the background is valid at 18:25 UTC on 4 October 2013.  A traditional enhancement is applied to the satellite 
image.  Cold cloud tops are white.  The overlay is partially transparent, except clear areas, and areas outside of the 
domain, which are not filled. 
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Figure 18.  This figure depicts the initial-hour HRRR optimal sky cover product, in units of percent (%) sky cover, 
for the one-hour window beginning at 18:00 UTC on 4 October 2013.  Overcast areas are in blue.  The infrared 
window satellite image from GOES-East in the background is valid at 18:25 UTC on 4 October 2013.  A traditional 
enhancement is applied to the satellite image.  Cold cloud tops are white.  The overlay is partially transparent, 
except clear areas, and areas outside of the domain, which are not filled. 
  



98 

 
Figure 19.  All of the histograms in this four-panel plot are valid for the one-hour window beginning at 18:00 UTC 
on 4 October 2013, except Panel C, which is valid at the top of the hour.  Each histogram shows the frequency at 
which the value range, as indicated on the abscissa, occurs among all non-missing points in the indicated product.  
Each increment includes the range of values greater than or equal to the value to the left of the column and less than 
the value to the right of the column, except for the rightmost bin, which includes points with a value of 100%.  The 
left ordinate axis indicates the frequency in terms of the number of points.  The right ordinate axis indicates the 
percentage of the frequency compared to all non-missing points.  This percentage also appears immediately above 
each bar.  Panel A depicts the distribution for the blended sky cover analysis.  Panel B depicts the distribution for the 
NDFD total cloud cover one-hour forecast.  Panel C depicts the distribution for the HRRR total cloud cover 
analysis.  Panel D depicts the distribution for the initial-hour HRRR optimal sky cover product. 
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Figure 20.  All of the histograms in this four-panel plot are valid for the one-hour window beginning at 18:00 UTC 
on 4 October 2013.  Each histogram shows the occurrence frequency of differences between collocated, non-missing 
points within the increments as indicated on the abscissa.  Each increment includes the range of values greater than 
or equal to the value to the left of the column, if present, and less than the value to the right of the column, if present.  
The left ordinate axis indicates the frequency in terms of the number of points.  The right ordinate axis indicates the 
percentage of the frequency compared to all non-missing differenced points.  This percentage also appears 
immediately above each bar.  Panel A is the difference of the blended sky cover analysis from the HRRR total cloud 
cover analysis.  Panel B is the difference of the blended sky cover analysis from the initial-hour HRRR optimal sky 
cover product.  Panels C and D are the same as for panels A and B, respectively, except for using the NDFD total 
cloud cover one-hour forecast instead of the blended sky cover analysis. 
  

A  B 
 

C  D 



100 

 
Figure 21.  This figure of the difference of the blended sky cover analysis from the initial-hour HRRR optimal sky 
cover product, in units of percent (%) sky cover, is valid for the one-hour window beginning at 18:00 UTC on 4 
October 2013.  Blue shades indicate a negative difference, where the blended sky cover analysis value for the 
shaded point is greater than the corresponding HRRR optimal sky cover product value; red shades indicate a positive 
difference, where the HRRR optimal sky cover product value for the shaded point is greater than the corresponding 
blended sky cover analysis value. 
  



101 

 
Figure 22.  This figure of the difference of the NDFD total cloud cover one-hour forecast from the initial-hour 
HRRR optimal sky cover product, in units of percent (%) sky cover, is valid for the one-hour window beginning at 
18:00 UTC on 4 October 2013.  Blue shades indicate a negative difference, where the NDFD total cloud cover one-
hour forecast value for the shaded point is greater than the corresponding HRRR optimal sky cover product value; 
red shades indicate a positive difference, where the HRRR optimal sky cover product value for the shaded point is 
greater than the corresponding NDFD total cloud cover one-hour forecast value. 
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Figure 23.  This figure depicts the infrared window satellite image from GOES-East valid at 3:00 UTC on 19 
October 2013.  A traditional enhancement is applied to the satellite image.  Cold cloud tops are white. 
  



103 

 
Figure 24.  This figure depicts the blended sky cover analysis, in units of percent (%) sky cover, for the one-hour 
window beginning at 3:00 UTC on 19 October 2013.  Overcast areas are in blue.  The infrared window satellite 
image from GOES-East in the background is valid at 3:00 UTC on 19 October 2013.  A traditional enhancement is 
applied to the satellite image.  Cold cloud tops are white.  The overlay is partially transparent, except clear areas, 
which are not filled. 
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Figure 25.  This figure depicts the NDFD total cloud cover one-hour forecast, in units of percent (%) sky cover, for 
the one-hour window beginning at 3:00 UTC on 19 October 2013.  Overcast areas are in blue.  The infrared window 
satellite image from GOES-East in the background is valid at 3:00 UTC on 19 October 2013.  A traditional 
enhancement is applied to the satellite image.  Cold cloud tops are white.  The overlay is partially transparent, 
except clear areas, and areas outside of the domain, which are not filled. 
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Figure 26.  This figure depicts the HRRR total cloud cover analysis, in units of percent (%) cloud cover, valid at 
3:00 UTC on 19 October 2013.  Overcast areas are in blue.  The infrared window satellite image from GOES-East in 
the background is valid at 3:00 UTC on 19 October 2013.  A traditional enhancement is applied to the satellite 
image.  Cold cloud tops are white.  The overlay is partially transparent, except clear areas, and areas outside of the 
domain, which are not filled. 
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Figure 27.  This figure depicts the initial-hour HRRR optimal sky cover product, in units of percent (%) sky cover, 
for the one-hour window beginning at 3:00 UTC on 19 October 2013.  Overcast areas are in blue.  The infrared 
window satellite image from GOES-East in the background is valid at 3:00 UTC on 19 October 2013.  A traditional 
enhancement is applied to the satellite image.  Cold cloud tops are white.  The overlay is partially transparent, 
except clear areas, and areas outside of the domain, which are not filled. 
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Figure 28.  All of the histograms in this four-panel plot are valid for the one-hour window beginning at 3:00 UTC on 
19 October 2013, except Panel C, which is valid at the top of the hour.    The description of the axes and panels is 
found in the caption of Figure 19. 
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Figure 29.  All of the histograms in this four-panel plot are valid for the one-hour window beginning at 3:00 UTC on 
19 October 2013.  The description of the axes and panels is found in the caption of Figure 20. 
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Figure 30.  This figure of the difference of the blended sky cover analysis from the initial-hour HRRR optimal sky 
cover product, in units of percent (%) sky cover, is valid for the one-hour window beginning at 3:00 UTC on 19 
October 2013.  Blue shades indicate a negative difference, where the blended sky cover analysis value for the 
shaded point is greater than the corresponding HRRR optimal sky cover product value; red shades indicate a positive 
difference, where the HRRR optimal sky cover product value for the shaded point is greater than the corresponding 
blended sky cover analysis value. 
  



110 

 
Figure 31.  This figure of the difference of the NDFD total cloud cover one-hour forecast from the initial-hour 
HRRR optimal sky cover product, in units of percent (%) sky cover, is valid for the one-hour window beginning at 
3:00 UTC on 19 October 2013.  Blue shades indicate a negative difference, where the NDFD total cloud cover one-
hour forecast value for the shaded point is greater than the corresponding HRRR optimal sky cover product value; 
red shades indicate a positive difference, where the HRRR optimal sky cover product value for the shaded point is 
greater than the corresponding NDFD total cloud cover one-hour forecast value. 
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Figure 32.  This figure depicts the infrared window satellite image from GOES-East valid at 12:15 UTC on 5 
November 2013.  A traditional enhancement is applied to the satellite image.  Cold cloud tops are white. 
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Figure 33.  This figure depicts the blended sky cover analysis, in units of percent (%) sky cover, for the one-hour 
window beginning at 12:00 UTC on 5 November 2013.  Overcast areas are in blue.  The infrared window satellite 
image from GOES-East in the background is valid at 12:15 UTC on 5 November 2013.  A traditional enhancement 
is applied to the satellite image.  Cold cloud tops are white.  The overlay is partially transparent, except clear areas, 
which are not filled. 
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Figure 34.  This figure depicts the NDFD total cloud cover one-hour forecast, in units of percent (%) sky cover, for 
the one-hour window beginning at 12:00 UTC on 5 November 2013.  Overcast areas are in blue.  The infrared 
window satellite image from GOES-East in the background is valid at 12:15 UTC on 5 November 2013.  A 
traditional enhancement is applied to the satellite image.  Cold cloud tops are white.  The overlay is partially 
transparent, except clear areas, and areas outside of the domain, which are not filled. 
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Figure 35.  This figure depicts the HRRR total cloud cover analysis, in units of percent (%) cloud cover, valid at 
12:00 UTC on 5 November 2013.  Overcast areas are in blue.  The infrared window satellite image from GOES-East 
in the background is valid at 12:15 UTC on 5 November 2013.  A traditional enhancement is applied to the satellite 
image.  Cold cloud tops are white.  The overlay is partially transparent, except clear areas, and areas outside of the 
domain, which are not filled. 
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Figure 36.  This figure depicts the initial-hour HRRR optimal sky cover product, in units of percent (%) sky cover, 
for the one-hour window beginning at 12:00 UTC on 5 November 2013.  Overcast areas are in blue.  The infrared 
window satellite image from GOES-East in the background is valid at 12:15 UTC on 5 November 2013.  A 
traditional enhancement is applied to the satellite image.  Cold cloud tops are white.  The overlay is partially 
transparent, except clear areas, and areas outside of the domain, which are not filled. 
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Figure 37.  All of the histograms in this four-panel plot are valid for the one-hour window beginning at 12:00 UTC 
on 5 November 2013, except Panel C, which is valid at the top of the hour.  The description of the axes and panels is 
found in the caption of Figure 19. 
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Figure 38.  All of the histograms in this four-panel plot are valid for the one-hour window beginning at 12:00 UTC 
on 5 November 2013.  The description of the axes and panels is found in the caption of Figure 20. 
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Figure 39.  This figure of the difference of the blended sky cover analysis from the initial-hour HRRR optimal sky 
cover product, in units of percent (%) sky cover, is valid for the one-hour window beginning at 12:00 UTC on 5 
November 2013.  Blue shades indicate a negative difference, where the blended sky cover analysis value for the 
shaded point is greater than the corresponding HRRR optimal sky cover product value; red shades indicate a positive 
difference, where the HRRR optimal sky cover product value for the shaded point is greater than the corresponding 
blended sky cover analysis value. 
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Figure 40.  This figure of the difference of the NDFD total cloud cover one-hour forecast from the initial-hour 
HRRR optimal sky cover product, in units of percent (%) sky cover, is valid for the one-hour window beginning at 
12:00 UTC on 5 November 2013.  Blue shades indicate a negative difference, where the NDFD total cloud cover 
one-hour forecast value for the shaded point is greater than the corresponding HRRR optimal sky cover product 
value; red shades indicate a positive difference, where the HRRR optimal sky cover product value for the shaded 
point is greater than the corresponding NDFD total cloud cover one-hour forecast value. 
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Figure 41.  This figure shows the trend in the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The three-day mean non-zero coefficient value from runs where the 
optimizer produced a solution, is shown for the following quantities at the 200 hPa level:  relative humidity, in units 
of %/%, relative humidity less 100%, in units of %/%, cloud water mixing ratio, in units of %�kg/kg (absent), rain 
water mixing ratio, in units of %�kg/kg (absent), cloud ice mixing ratio, in units of %�kg/kg, snow mixing ratio, in 
units of %�kg/kg, positive absolute vorticity, in units of %�s, and negative absolute vorticity, in units of %�s.  The 
scale on the left for the relative humidity coefficients is linear.  The scale on the right for the condensate and 
vorticity coefficients is logarithmic.  Increments on the abscissa are one day.  A discontinuity in a line, or missing 
line on the graph, indicates that there are no non-zero coefficient values for that quantity within the open interval. 
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Figure 42.  This figure shows the trend in the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The three-day percentage of non-zero coefficient values from 
individual runs, compared to the total number of solved solutions within the three-day window, is shown for the 
following quantities at the 200 hPa level:  relative humidity, relative humidity less 100%, cloud water mixing ratio, 
rain water mixing ratio, cloud ice mixing ratio, snow mixing ratio, positive absolute vorticity, and negative absolute 
vorticity.  Plotted quantities are in units of percent (%).  Increments on the abscissa are one day. 
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Figure 43.  This figure shows the trend in the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The three-day mean non-zero coefficient value from runs where the 
optimizer produced a solution, is shown for the following quantities at the 300 hPa level:  relative humidity, in units 
of %/%, relative humidity less 100%, in units of %/%, cloud water mixing ratio, in units of %�kg/kg (absent), rain 
water mixing ratio, in units of %�kg/kg (absent), cloud ice mixing ratio, in units of %�kg/kg, and snow mixing ratio, 
in units of %�kg/kg.  The scale on the left for the relative humidity coefficients is linear.  The scale on the right for 
the condensate coefficients is logarithmic.  Increments on the abscissa are one day.  A discontinuity in a line, or 
missing line on the graph, indicates that there are no non-zero coefficient values for that quantity within the open 
interval. 
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Figure 44.  This figure shows the trend in the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The three-day percentage of non-zero coefficient values from 
individual runs, compared to the total number of solved solutions within the three-day window, is shown for the 
following quantities at the 300 hPa level:  relative humidity, relative humidity less 100%, cloud water mixing ratio, 
rain water mixing ratio, cloud ice mixing ratio, and snow mixing ratio.  Plotted quantities are in units of percent (%).  
Increments on the abscissa are one day. 
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Figure 45.  This figure shows the trend in the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The three-day mean non-zero coefficient value from runs where the 
optimizer produced a solution, is shown for the following quantities at the 500 hPa level:  relative humidity, in units 
of %/%, relative humidity less 100%, in units of %/%, cloud water mixing ratio, in units of %�kg/kg, rain water 
mixing ratio, in units of %�kg/kg (absent), cloud ice mixing ratio, in units of %�kg/kg, and snow mixing ratio, in 
units of %�kg/kg.  The scale on the left for the relative humidity coefficients is linear.  The scale on the right for the 
condensate coefficients is logarithmic.  Increments on the abscissa are one day.  A discontinuity in a line, or missing 
line on the graph, indicates that there are no non-zero coefficient values for that quantity within the open interval. 
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Figure 46.  This figure shows the trend in the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The three-day percentage of non-zero coefficient values from 
individual runs, compared to the total number of solved solutions within the three-day window, is shown for the 
following quantities at the 500 hPa level:  relative humidity, relative humidity less 100%, cloud water mixing ratio, 
rain water mixing ratio, cloud ice mixing ratio, and snow mixing ratio.  Plotted quantities are in units of percent (%).  
Increments on the abscissa are one day. 
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Figure 47.  This figure shows the trend in the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The three-day mean non-zero coefficient value from runs where the 
optimizer produced a solution, is shown for the following quantities at the 700 hPa level:  relative humidity, in units 
of %/%, relative humidity less 100%, in units of %/%, cloud water mixing ratio, in units of %�kg/kg, rain water 
mixing ratio, in units of %�kg/kg, cloud ice mixing ratio, in units of %�kg/kg, and snow mixing ratio, in units of 
%�kg/kg.  The scale on the left for the relative humidity coefficients is linear.  The scale on the right for the 
condensate coefficients is logarithmic.  Increments on the abscissa are one day.  A discontinuity in a line, or missing 
line on the graph, indicates that there are no non-zero coefficient values for that quantity within the open interval. 
  



127 

 
Figure 48.  This figure shows the trend in the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The three-day percentage of non-zero coefficient values from 
individual runs, compared to the total number of solved solutions within the three-day window, is shown for the 
following quantities at the 700 hPa level:  relative humidity, relative humidity less 100%, cloud water mixing ratio, 
rain water mixing ratio, cloud ice mixing ratio, and snow mixing ratio.  Plotted quantities are in units of percent (%).  
Increments on the abscissa are one day. 
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Figure 49.  This figure shows the trend in the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The three-day mean non-zero coefficient value from runs where the 
optimizer produced a solution, is shown for the following quantities at the 800 hPa level:  relative humidity, in units 
of %/%, relative humidity less 100%, in units of %/%, cloud water mixing ratio, in units of %�kg/kg, rain water 
mixing ratio, in units of %�kg/kg, cloud ice mixing ratio, in units of %�kg/kg, and snow mixing ratio, in units of 
%�kg/kg.  The scale on the left for the relative humidity coefficients is linear.  The scale on the right for the 
condensate coefficients is logarithmic.  Increments on the abscissa are one day.  A discontinuity in a line, or missing 
line on the graph, indicates that there are no non-zero coefficient values for that quantity within the open interval. 
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Figure 50.  This figure shows the trend in the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The three-day percentage of non-zero coefficient values from 
individual runs, compared to the total number of solved solutions within the three-day window, is shown for the 
following quantities at the 800 hPa level:  relative humidity, relative humidity less 100%, cloud water mixing ratio, 
rain water mixing ratio, cloud ice mixing ratio, and snow mixing ratio.  Plotted quantities are in units of percent (%).  
Increments on the abscissa are one day. 
  



130 

 
Figure 51.  This figure shows the trend in the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The three-day mean non-zero coefficient value from runs where the 
optimizer produced a solution, is shown for the following quantities at the 850 hPa level:  relative humidity, in units 
of %/%, relative humidity less 100%, in units of %/%, cloud water mixing ratio, in units of %�kg/kg, rain water 
mixing ratio, in units of %�kg/kg, cloud ice mixing ratio, in units of %�kg/kg, and snow mixing ratio, in units of 
%�kg/kg.  The scale on the left for the relative humidity coefficients is linear.  The scale on the right for the 
condensate coefficients is logarithmic.  Increments on the abscissa are one day.  A discontinuity in a line, or missing 
line on the graph, indicates that there are no non-zero coefficient values for that quantity within the open interval. 
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Figure 52.  This figure shows the trend in the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The three-day percentage of non-zero coefficient values from 
individual runs, compared to the total number of solved solutions within the three-day window, is shown for the 
following quantities at the 850 hPa level:  relative humidity, relative humidity less 100%, cloud water mixing ratio, 
rain water mixing ratio, cloud ice mixing ratio, and snow mixing ratio.  Plotted quantities are in units of percent (%).  
Increments on the abscissa are one day. 
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Figure 53.  This figure shows the trend in the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The three-day mean non-zero coefficient value from runs where the 
optimizer produced a solution, is shown for the following quantities at the 900 hPa level:  relative humidity, in units 
of %/%, relative humidity less 100%, in units of %/%, cloud water mixing ratio, in units of %�kg/kg, rain water 
mixing ratio, in units of %�kg/kg, cloud ice mixing ratio, in units of %�kg/kg, and snow mixing ratio, in units of 
%�kg/kg.  The scale on the left for the relative humidity coefficients is linear.  The scale on the right for the 
condensate coefficients is logarithmic.  Increments on the abscissa are one day.  A discontinuity in a line, or missing 
line on the graph, indicates that there are no non-zero coefficient values for that quantity within the open interval. 
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Figure 54.  This figure shows the trend in the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The three-day percentage of non-zero coefficient values from 
individual runs, compared to the total number of solved solutions within the three-day window, is shown for the 
following quantities at the 900 hPa level:  relative humidity, relative humidity less 100%, cloud water mixing ratio, 
rain water mixing ratio, cloud ice mixing ratio, and snow mixing ratio.  Plotted quantities are in units of percent (%).  
Increments on the abscissa are one day. 
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Figure 55.  This figure shows the trend in the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The three-day mean non-zero coefficient value from runs where the 
optimizer produced a solution, is shown for the following quantities at the 950 hPa level:  relative humidity, in units 
of %/%, relative humidity less 100%, in units of %/%, cloud water mixing ratio, in units of %�kg/kg, rain water 
mixing ratio, in units of %�kg/kg, cloud ice mixing ratio, in units of %�kg/kg (absent), and snow mixing ratio, in 
units of %�kg/kg.  The scale on the left for the relative humidity coefficients is linear.  The scale on the right for the 
condensate coefficients is logarithmic.  Increments on the abscissa are one day.  A discontinuity in the line, or 
missing line on the graph, indicates that there are no non-zero coefficient values for the quantity within the open 
interval. 
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Figure 56.  This figure shows the trend in the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The three-day percentage of non-zero coefficient values from 
individual runs, compared to the total number of solved solutions within the three-day window, is shown for the 
following quantities at the 950 hPa level:  relative humidity, relative humidity less 100%, cloud water mixing ratio, 
rain water mixing ratio, cloud ice mixing ratio, and snow mixing ratio.  Plotted quantities are in units of percent (%).  
Increments on the abscissa are one day. 
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Figure 57.  This figure shows the trend in the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The three-day mean non-zero coefficient value from runs where the 
optimizer produced a solution, is shown for the following quantities at the 1000 hPa level:  relative humidity, in 
units of %/%, cloud water mixing ratio, in units of %�kg/kg, rain water mixing ratio, in units of %�kg/kg, cloud ice 
mixing ratio, in units of %�kg/kg (absent), and snow mixing ratio, in units of %�kg/kg (absent).  The scale on the 
left for the relative humidity coefficient is linear.  The scale on the right for the condensate coefficients is 
logarithmic.  Increments on the abscissa are one day.  A discontinuity in a line, or missing line on the graph, 
indicates that there are no non-zero coefficient values for that quantity within the open interval. 
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Figure 58.  This figure shows the trend in the output from the optimizer for a period from 21 September 2013 at 1 
UTC through 1 November 2013 at 23 UTC.  The three-day percentage of non-zero coefficient values from 
individual runs, compared to the total number of solved solutions within the three-day window, is shown for the 
following quantities at the 1000 hPa level:  relative humidity, cloud water mixing ratio, rain water mixing ratio, 
cloud ice mixing ratio, and snow mixing ratio.  Plotted quantities are in units of percent (%).  Increments on the 
abscissa are one day. 
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Figure 59.  This figure shows the trend in the 1000 hPa relative humidity threshold output from the optimizer for a 
period from 21 September 2013 at 1 UTC through 1 November 2013 at 23 UTC.  The three-day mean is plotted in 
units of percent (%).  For each point on the grid, the coefficient and scalar are applied to the 1000 hPa relative 
humidity field value only when the value is greater than the threshold.  Increments on the abscissa are one day. 
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Appendix A 

Celestial Dome Effective Cloud Amount Logic 

The satellite sky cover product is a composite of scans from two geostationary weather 

satellites that observe the continental United States.  The primary input for the satellite sky cover 

product is the effective cloud amount (ECA), also known as effective cloud emissivity, output 

that is spatially averaged as part of the celestial dome effective cloud amount (CDECA) product.  

All input pixels are corrected for parallax. 

One major component of the satellite sky cover product is the spatial averaging to create 

the celestial dome.  For this, an 11 by 11 box average is used, centered on the averaged point.  

This product includes additional corrections to make it representative of sky cover. 

One correction addresses thin high cloud above thick low cloud.  In such situations, the 

composite ECA output is the value for the thin high cloud, producing a sharp gradient in the 

ECA output despite a uniform lower cloud deck.  To resolve this inconsistency, the CDECA is 

the product of the cloud fraction and cloud probability when the: 

• Cloud emissivity is less than 50%, 

• Cloud fraction is greater than 95%, 

• Cloud probability is greater than 95%, and 

• Cloud type is opaque ice, cirrus, overlapping, or an overshooting top. 

This change can occasionally lead to an overestimate of sky cover when the cloud 

probability and cloud fraction are both near 100% but the cloud is optically thin and there is no 

underneath cloud deck.  The use of optical depth as a discriminator may prove insightful in 

addressing some of these scenarios. 
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Another correction addresses CDECA values of less than 100% for overcast scenes 

involving water cloud.  This correction results in an upward increase in sky cover amount for 

stratocumulus clouds and other spatially homogenous clouds.  In such situations, where the 

spatial standard deviation of the CDECA output at a satellite-observed, parallax-corrected pixel 

is less than or equal to 2.50, and the percent of liquid water clouds is greater than or equal to 

95%, the CDECA value is set to 100%.  The standard deviation threshold was chosen via 

inspection.  For each pixel, the spatial standard deviation is calculated over the same pixel-

centered 11 by 11 pixel box that is used to produce the initial CDECA value. 

 

List of Acronyms 

CDCTP celestial dome cloud top pressure 

CDECA celestial dome effective cloud amount 

CTP cloud top pressure 

ECA effective cloud amount 

GOES Geostationary Operational Environmental Satellite(s) 

HRRR High-Resolution Rapid Refresh (model) 

MAE mean absolute error 

MM-DD date format:  two-digit month, two-digit day 

NDFD National Digital Forecast Database 

NWP numerical weather prediction 

NWS National Weather Service 

PDF probability density function 

POD probability of detection 

RMSE root-mean-square error 

RUC Rapid Update Cycle (model) 

WRF Weather Research and Forecast (model) 


