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ABSTRACT

A method for automated classification of surface and cloud types using Moderate Resolution Imaging Spec-
troradiometer (MODIS) radiance measurements has been developed. The MODIS cloud mask is used to define
the training sets. Surface and cloud-type classification is based on the maximum likelihood (ML) classification
method. Initial classification results define training sets for subsequent iterations. Iterations end when the number
of pixels switching classes becomes smaller than a predetermined number or when other criteria are met. The
mean vector in the spectral and spatial domain within a class is used for class identification, and a final 1-km-
resolution classification mask is generated for such a field of view in a MODIS granule. This automated clas-
sification refines the output of the cloud mask algorithm and enables further applications such as clear atmospheric
profile or cloud parameter retrievals from MODIS and Atmospheric Infrared Sounder (AIRS) radiance mea-
surements. The advantages of this method are that the automated surface and cloud-type classifications are
independent of radiance or brightness temperature threshold criteria, and that the interpretation of each class is
based on the radiative spectral characteristics of different classes. This paper describes the ML classification
agorithm and presents daytime MODI S classification results. The classification results are compared with the
MODIS cloud mask, visible images, infrared window images, and other observations for an initia validation.

VOLUME 42

High-Spatial-Resolution Surface and Cloud-Type Classification from MODIS

1. Introduction

The Moderate Resolution Imaging Spectroradiometer
(MODIS) is a key instrument on the Earth Observing
System (EOS) for conducting global change research.
It provides global observations of the earth’s land,
oceans, and atmosphere in 36 visible (V1S), near-infra-
red (NIR), and infrared (IR) regions of the spectrum
from 0.4 to 14.5 um. MODIS measurements record bi-
ological and geophysical processes on a global scale
every 1-2 days in unprecedented detail.

MODIS cloud classification has many applications.
MODIS atmospheric and surface parameter retrievals
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require cloud-free measurements (Li et al. 2001a), while
cloud-type information such as single- and/or multilayer
or high/medium/low cloud information will greatly ben-
efit cloud parameter retrievals (Frey et al. 1999; Li et
al. 2001b) and the derivation of cloud motion vectors
(Velden et al. 1997). Cloud classification can also im-
prove the monitoring of deep convective clouds and
rainfall estimation from IR cloud imagery data (Li et
al. 1992, 1993). MODIS cloud information can further
the International Satellite Cloud Climatology Program
(ISCCP) that was stimulated by research on several
methods of cloud classification that have been tested in
a systematic algorithm intercomparison (Rossow et al.
1985). In addition, clear-, single-, and/or multilayer
cloud information from MODIS measurements within
asingle Atmospheric Infrared Sounder (AIRS) footprint
(15 km) will greatly enhance the cloud clearing of partly
cloudy AIRS radiances (Susskind et al. 1998) and there-
foreimprove atmospheric temperature and moisture pro-
files through the synergism of MODIS and AIRS ra-
diance measurements from the Aqua satellite launched
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TaBLE 1. MODIS spectral band specifications.

Primary use Band Bandwidth2 Spectral radiance® Required SNRe
Land/cloud/aerosols boundary 1 620-670 21.8 128
2 841-876 24.7 201
Land/cloud/aerosols properties 3 459-479 35.3 243
4 545-565 29.0 228
5 1230-1250 5.4 74
6 1628-1652 7.3 275
7 2105-2155 1.0 110
Ocean color/phytoplankton/biogeochemistry 8 405-420 44.9 880
9 438-448 41.9 838
10 483-493 32.1 802
11 526-536 27.9 754
12 546-556 21.0 750
13 662-672 9.5 910
14 673-683 8.7 1087
15 743-753 10.2 586
16 862-877 6.2 516
Atmospheric water vapor 17 890-920 10.0 167
18 931-941 3.6 57
19 915-965 15.0 250
Primary use Band Bandwidth Spectra radiance Required NEAT¢ (K)
Surface temperature 20 3.660-3.840 0.45 (300 K) 0.05
21 3.929-3.989 2.38 (335 K) 2.00
22 3.929-3.989 0.67 (300 K) 0.07
23 4.020-4.080 0.79 (300 K) 0.07
Temperature profile 24 4.433-4.498 0.17 (250 K) 0.25
25 4.482-4.549 0.59 (275 K) 0.25
Cirrus clouds/water vapor 26 1.360-1.390 6.00 150 (SNR)
Water vapor 27 6.535-6.895 1.16 (240 K) 0.25
28 7.175-7.475 2.18 (250 K) 0.25
29 8.400-8.700 9.58 (300 K) 0.05
Ozone 30 9.580-9.880 3.69 (250 K) 0.25
Surface temperature 31 10.780-11.280 9.55 (300 K) 0.05
32 11.770-12.270 8.94 (300 K) 0.05
Temperature profile 33 13.185-13.485 4.52 (260 K) 0.25
34 13.485-13.785 3.76 (250 K) 0.25
35 13.785-14.085 3.11 (240 K) 0.25
36 14.085-14.385 2.08 (220 K) 0.35

aBands 1 to 19:

nm; bands 20 to 36: pum.

® Spectral radiance values: W m=2 sr=t um=.
¢ SNR is signal-to-noise ratio.
9 NEAT is noise-equivalent temperature difference.

TaBLE 2. Initial classes from MODIS cloud mask a gorithm.

Class index Content
1 Confident clear water
2 Confident clear coastal
3 Confident clear desert or semiarid ecosystems
4 Confident clear land
5 Confident clear snow or ice
6 Shadow of cloud or other clear
7 Other confident clear
8 Cirrus detected by solar bands
9 Cirrus detected by infrared bands
10 High clouds detected by CO, bands
11 High clouds detected by 6.7-um band
12 High clouds detected by 1.38-um band
13 High clouds detected by 3.7- and 12-um bands
14 Other clouds or possible clouds
15 Undecided

on 4 May 2002. Surface and cloud-type classification
and identification are very important for surface, at-
mospheric, and cloud property retrievals.

Researchers at the Cooperative Institute for Meteo-
rological Satellite Studies (CIMSS) of the University of
Wisconsin—Madison have developed an algorithm for
clear-sky detection from MODIS measurements (Ack-
erman et al. 1998). The MODIS cloud mask relies on
a variety of threshold tests for clear-sky and cloudy
determinations. This reliance on thresholds results in
limitations in specia situations, such as separating low
clouds in the presence of snow. To reduce the depen-
dence on thresholds in the cloud mask algorithm, the
maximum likelihood (ML) classification procedure can
be used as a supplement to improve the detection of
clear and cloudy skies in the MODIS imagery.

A number of researchers have addressed cloud clas-
sification from a variety of perspectives. Imagery clas-
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Fic. 1. (left) MODIS 0.86-um (band 2; in units of reflectance (percent); (right) its LSD images of MODIS in
percent variance. Showing are the clouds over the eastern part of the United States at 1635 UTC 5 Sep 2000.

sification studies include, but are not limited to, dis-
crimination of cloud typesin polar regions (Ebert 1987,
1989; Key et al. 1989; Key 1990; Welch et al. 1992)
and in tropical scenes (Desboiset al. 1982; Inoue 1987),
discrimination of ice and water clouds (Knottenberg and
Raschke 1982), separation of clouds and snow (Tsonis
1984; Allen et al. 1990; Li and Zhou 1990), detection
of fire and smoke (Baum and Trepte 1999), classification
of ocean clouds (Garand 1988; Tag et a. 2000; Lubin
and Morrow 1998), and clear-sky classification (Saun-
ders and Kriebel 1998; Vemury et al. 2001). The clas-
sification methods include a variety of approaches such
as neural networks, maximum likelihood, and fuzzy log-
ic. In general, classification procedures can be divided
into two types: supervised and unsupervised. The pre-
mise of supervised classification is the *‘training” of a
classifier based on known cases of specific scenes such
that the classifier, once trained, can be used with con-
fidence on unknown cloud image samples. This method,
although straightforward, entails considerable effort in
the manual typing of the training samples (Tag et a.
2000). An unsupervised classification method allowsthe
classifier to determine its own division of cloud types

using a mathematical separability of classes based on
designated scene or cloud radiative spectral character-
istics. However, good initial classification is very im-
portant for unsupervised classification due to insuffi-
cient training data.

In this paper, the MODIS cloud mask (Ackerman et
al. 1998) information is used as the initial classification
for the unsupervised MODIS surface and cloud-type
classification approach. The objectives of this study are
to

1) provide an additional clear/cloud mask that can be
used for validation or comparison with other cloud
products from MODIS measurements;

2) determine a reliable clear/cloudy index for atmo-
spheric total precipitable water (TPW) and total col-
umn ozone retrieval from MODI S clear-sky radiance
measurements;

3) estimate cloud types that can greatly benefit cloud-
top pressure and effective cloud amount retrievals
with combined MODIS and AIRS measurements,
and

4) generate clear-, single-, and/or multilayer cloud in-



FEBRUARY 2003

(K)

220 240 260 280 300 320

LI ET AL.

207

0 1 2 3 4

FiG. 2. (left) MODIS 11-um (band 31) brightness temperature image (K) and (right) its LSD image. Areais the
eastern part of the United States at 1635 UTC 5 Sep 2000.

formation within an AIRS footprint for better AIRS
cloud clearing.

The unique features of this cloud classification study
are as follows.

1) The MODIS cloud mask is used to provide a very
good initial classification for the ML classifier.

2) Unlike the MODIS cloud mask that returns a con-
fidence level of clear ranging from 1 (high) to O
(low), the ML classifier provides a binary yesno
answer for each pixel on clear/cloud discrimination.

3) Unlike other cloud classification proceduresthat rely
on spectral coherence in a spatial area of N by N
pixels [for example, Tag et al. (2000) use 16 km by
16 km areas for advanced very high resolution ra-
diometer (AVHRR) cloud classification], this ap-
proach uses 1-km single-field-of-view featuresin the
classification; therefore, it returns a 1-km high-spa-
tial-resolution classification mask.

4) The algorithms for surface and cloud-type identifi-
cation in the MODIS cloud mask are also used in
the ML classifier, thus reducing the error due to man-
ual identification of each class.

Section 2 provides a description of the MODIS cloud
mask algorithm. Section 3 outlines the algorithms for
the scene and cloud classification with MODI S spectral
band radiance measurements. Section 4 presents a sum-
mary of MODI S spectral characteristics and feature se-
lection. Section 5 summarizes the physical basis for the
identification of surface and cloud typesin the ML clas-
sification mask. Section 6 describes the daytime clas-
sification and initial validation using MODIS measure-
ments. A discussion of issues affecting classification
results is given in section 7. Section 8 describes the
conclusions and future work.

2. Summary of the MODI'S cloud mask algorithm

MODIS measures radiances in bands 1 and 2 at 0.25-
km spatial resolution, in bands 3—7 at 0.5-km resolution,
and the remaining 29 bands at 1-km resolution (see
Table 1 for the MODIS spectral band specification; the
numbers in this table are available online at http://mod-
is.gsfc.nasa.gov/about/specs.html). Radiances from 14
spectral bands (bands 1 and 2, bands 5 and 6, bands
18-21, bands 26 and 27, band 29, bands 31 and 32,
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TaBLE 3. Features used in ML classification algorithm.

Used
in
cloud
Features Unit  mask

BAND 1 %
BAND 2 %
BAND 3 %
BAND 4 %
BAND 5 %
BAND 6 %
BAND 7 %
LSD-BAND 1 %
LSD-BAND 2 %
LSD-BAND 3 %
LSD-BAND 4 %
LSD-BAND 5 %
LSD-BAND 6
LSD-BAND 7
BAND 17
BAND 18
BAND 19
BAND 20
BAND 21
BAND 22
BAND 23
BAND 24
BAND 25
BAND 26
BAND 27
LSD-BAND 27
BAND 28
LSD-BAND 28
BAND 29
BAND 31
LSD-BAND 31
BAND 32
BAND 33
BAND 34
BAND 35

BT, BT,
BTs.e_BTu
BT.,—BTs,
BT, BT;;
BT.,—BT,,
BT,-BT,

BT BT
BT11_BT3.9

Primary use

Clouds, shadow
Low clouds

Snow
Snow
Snow, shadow

Cirrus, low clouds, surface

Cirrus, low clouds, surface

Clouds, snow, surface
Clouds, snow, surface

X

Low clouds
Shadow
Shadow

Clouds, surface

Clouds, surface

High clouds

Clouds
Clouds

Clouds

22222222 <2Z2<KXKZ2<KXK<KZ2Z2Z2<K<KZ2Z2Z2Z2<KX<KXKKX<KXKZ22222Z2222<<22<X<

AR AR AR AR AR AR AR ARARAARARAARAARAARAARAAASAARAARARAAXNSLS S S S

band 35) are used in the MODI'S cloud mask algorithm
(initial classification) to estimate whether a given view
of the earth’s surfaceis obstructed by clouds or optically
thick aerosol, and whether a clear scene is affected by
cloud shadows (Ackerman et al. 1998). The physical
basis for the MODIS cloud detection is that clouds are
generally characterized by higher reflectance and lower
brightness temperatures than the underlying earth’s sur-
face. The MODIS cloud mask algorithm determines if
agiven pixel is clear by combining the results of several
spectral threshold tests. A confidence level of clear sky
for each ground instantaneous field of view (GIFOV)
is estimated based on a comparison between observed
radiances and specified thresholds. The cloud mask al-
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gorithm also uses background data such as a water—and
index.

The MODIS cloud mask (information available on-
line at http://modis-atmos.gsfc.nasa.gov/MOD35_L 2/
index.html) provides 15 classes. Those classes arethe
primary input for the initial classification of the it-
erative ML classification procedure. The 15 classes
are listed in Table 2. The initial surface and cloud
types used for the ML classification procedure varies
with the number of classes one attempts to extract
from the MODIS cloud mask (e.g., the 2 clear-vs-
cloudy classes would be very different from the 15
classes extracted here).

3. ML classification algorithm based on the
MODIS cloud mask

Classification or clustering of the radiances and local
spatial distribution of the radiances is an important part
of data analysis and image segmentation. A group or
cluster refers to a class of data that has a similar ap-
pearance (i.e., for MODIS images, it can be a particular
surface type or cloud cover). Basic data clustering does
not need any external information for its completion.

In general, the distribution of each class presented in
the MODI S image data can be approximated by a mul-
tivariate normal distribution, or locally normal distri-
bution (Lee et al. 1999), and the classification procedure
can be performed by the well-known ML or quadratic
classifier (Haertel and Landgrebe 1999)

G(X) = =(X = p)TZ (X — ) — In|%]
+ 2 InP(w;), @

with w; being a particular class, X an unlabeled vector
of apixel spanning the space of the radiance and spatial
distribution of the radiance, u; the class mean vector in
that space, X, the class covariance matrix, P(w,) the
corresponding a priori probability for class w;, and
G;(X) the discriminate function associated with class
w;; subscript i is the index for the ith class. For sim-
plicity, assuming that the probability P(w;) for each
class w; is equal, a distance is defined to assign each
pixel to particular class w;:

Di(X) = (X = m)" 27 (X — w) + I (2
Mathematically, the pixel X is assigned to class w; if
D;(X) = D;(X) for al o, # w,. 3)

The clustering algorithm can be described by the fol-
lowing steps:

1) Classify the MODIS measurements using the MOD-
IS cloud mask, and calculate the mean vector and
covariance matrix of each class within the MODIS
cloud mask.

2) Calculate the distances between the vector of each
pixel and mean vectors of different classes, and as-
sign the pixel to the nearest class.
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Mixed M.L. Cld M.H. Cld H. Cid

Fic. 3. (a) (left) MODIS cloud mask and (right) ML classification mask. Time is 1635 UTC 5 Sep 2000 for case 1.
Classes of clear water, clear land, mixed types, middle-to-low clouds, middle-to-high clouds, and high clouds classified by
the MODIS cloud mask and ML classification algorithms are indicated.

3) Update the mean vector and covariance matrix of
each class after all pixels have been reassigned to
the nearest classes.

4) Repeat steps 2 and 3 until convergence criteria are
met. In this paper, if the sum of the off-diagonal
elements for each class in the classification matrix
(see the definition of classification matrix in section
7) is less than 6%, the iterations end. In general,
approximately 6 to 7 iterations are needed for afinal
ML classification result.

4. Feature selection for MODI S surface and cloud-
type classification

There are three types of features (radiances, variances
of radiances, and spectral brightness temperature dif-
ferences) in the MODIS classification. All the features
are determined at 1-km resolution. More spectral bands
are used for surface and cloud-type classification than
used for cloud masking.

a. Spectral band radiances

Radiances provide the primary spectral information
for different scene and cloud types. MODIS VIS/NIR
bands 1-7, bands 17—-29, and bands 31-35 are used
in the daytime classification. Theimagesfor VIS/NIR
bands 1-7 are all mapped into the IR spatial resolution
of 1 km. Hereinafter, we use a GIFOV to define the
MODIS original resolution; for example, for band 1
or 2, one GIFOV has 0.25-km resolution; for bands
3-7, one GIFOV has 0.5-km resolution; and for bands
17-36, one GIFOV has 1-km resolution. We use a
pixel as the 1-km average of GIFOVs for VIS/NIR
bands 1-7 images; for bands 17-36, a pixel is simply
a GIFOV.

VIS/NIR bands 1-7 are known to be sensitive to var-
ious types of clouds. The IR shortwave bands 20-25
have a strong cloud reflective radiance component in
addition to a thermal emission during the daytime. The
IR midwave bands 27-29 can be used with longwave
window bands 31 and 32 to detect clouds through their
strong water vapor absorption effects. The IR longwave
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Fic. 3. (Continued) (b) Enlarged image of a portion of (a) that shows the benefit of the ML classification in the vicinity
of the coastline (see arrows).

spectral bands 31-36, sensitive to different layers of
clouds, are used to determine the cloud-top pressure
(CTP) and effective cloud amount (ECA; Frey et al.
1999; Li et al. 2001b).

b. Variance images

A varianceimageis constructed for each of the VIS/
NIR bands 1-7 images and for the IR longwave 6.7-
(band 27), 7.3- (band 28), and 11-um window (band
31) images. In the varianceimagesfor VIS/NIR bands
1-7, the value attributed to each 1-km pixel is the
local standard deviation (LSD) of GIFOVswithin the
1-km area [e.g., the standard deviation is computed
from 4 by 4 values (GIFOVs) for bands 1 and 2, and
from 2 by 2 GIFOVs for bands 3-7]. In the IR 6.7-,
7.3-, and 11-m variance images, the value attributed
to each pixel is the local standard deviation in the 3
by 3 GIFOV neighborhood of the pixel (the standard
deviation computed from the nine values centered on
the pixel). Variance images for VIS/NIR bands 1-7
along with variance images for IR bands 27, 28, and
31 are used in the ML classification procedure.

Variance or textureimages of AVHRR have been used

in detecting surface types and different types of clouds
(Coakley and Bretherton 1982; Seze and Desbois 1987;
Uddstrom and Gray 1996). In the associated IR 11-um
window variance image, the boundaries of different
classes, or broken clouds, are well defined by very high
variances, whereas the variance is far smaller inside a
class. Cirrus corresponds to areas of high variances and
low stratiform clouds to areas of low variances. In the
associated VIS/NIR band 1 and band 2 images, edges
of different classes still present large variances; how-
ever, contrary to the IR 11-um window variances, low
variances in VIS/NIR band 1 and band 2 are associated
with cirrus clouds and relatively high variances with
low stratiform clouds. Figure 1 (left) showsthe MODIS
0.86-um (band 2) imagein units of reflectance (percent)
and (right) its variance image at 1635 UTC on 5 Sep-
tember 2000 over the eastern part of the United States.
High variances in Fig. 1 indicate cloud edges or low
clouds. Figure 2 (left) shows the associated IR 11-um
window brightness temperature (K) and (right) its var-
iance image. High variances in Fig. 2 indicate mixed
clouds or cirrus clouds. The variance range approxi-
mately from 0% to 10% for VIS/NIR images and 0 to
6 K for IR images.
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FiG. 4. (left) MODIS composite true color image from bands 1, 4, and 3 and (right) the BTz, —
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1 Z 3

BT,, image. Time is

1635 UTC 5 Sep 2000 for case 1.

c. Brightness temperature differences

Studies show that brightness temperature (BT) dif-
ferences between two IR spectral bands are very useful
for detecting clouds (Ackerman et al. 1998). For ex-
ample, in the 8-um region, ice/water particle absorption
is a a minimum, while atmospheric water vapor ab-
sorption is moderate. In the 11-um region, the opposite
is true; particle absorption is at @ maximum and at-
mospheric water vapor absorption isrelatively minimal.

By using bands in these two regions in tandem, cloud
properties can be distinguished (Inoue 1985; Prabhakara
et al. 1993). Large positive BT, — BT,, valuesindicate
the presence of cirrus clouds, where BT defines the
BT at 8.6 um. This is due to the larger increase in the
imaginary index of refraction of ice over that of water.
For clear conditions, BTg, — BT,; will usually be neg-
ative due to stronger atmospheric water vapor absorp-
tion at 8.6 wm than at 11 um. Most clouds appear as
positive values in the BT, — BT,;, image.

A third band in the 12-um region will enable cloud
phase delineation (Strabala et al. 1994). Water particle
absorption increases more between 11 and 12 pm than
between 8.6 and 11 um, whiletheincrease of ice particle

absorption is greater between 8.6 and 11 um than be-
tween 11 and 12 um. Thus, the BT,; — BT,, values of
water clouds are greater than the BT, — BT,;. Con-
versely, BT,, — BT,, values of an ice cloud scene are
greater than coincident BT,, — BT,,. Therefore, ice and
water clouds will separate in a scatter diagram of BT g
— BT,, versusBT,, — BT,,, withice cloudslying above
the unity slope and water clouds below. Mixed phase
or partial radiometer-filled ice over water clouds will
exhibit characteristics of both ice and water clouds in
this format, grouping near the unity slope. This infor-
mation is extremely useful for nighttime classification
when the visible measurements are not available.

Table 3 lists three types of features in the spectral
information (reflectance and BTs), spatial information
(variances), and BT differences used by the ML clas-
sification agorithm.

5. Identification of each classin the ML
classification mask

Each class is identified based on the spectral and
spatial radiance characteristics. In general, ML clas-
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FiG. 5. (left) MODIS band 2 image and (right) its variance image. Time is 1640 UTC 17 Dec 2000 for case 2.

sifies most surface and cloud types with the same
characteristics as the MODIS cloud mask (see Table
2 for the initial classes), although there might be sig-
nificant adjustmentsin pixel assignments among clas-
ses. Some classes may change their physical char-
acteristics after the ML classification procedure; for
example,

* class 2—clear coast may change to another clear sur-
face; or

» class 6-shadow of cloud may change to mixed surface
type; or

» class 9—cirrus cloud may change to clear surface.

The cloud type in the MODIS cloud mask may also
change after ML classification. For example, high cloud
in the cloud mask changes to middle-high cloud when
there is a substantia error in the MODIS cloud mask
procedure. Severa tests are applied to the class center
values (VIS/NIR bands 1-7 reflectance; VIS/NIR bands
1-7, IR bands 27-28 and IR 11-um variances; IR bands
20-25 and IR bands 27-35 brightness temperatures; as
well as BT differences between two spectral bands) to
ensure the identification. The tests include the three fol -
lowing steps.

a. First step: The identification of all clear
surface types

Classes 1, 2, 4, and 7 are clear classes according to
the MODI S cloud mask; however, they will need to pass
two additional tests discussed below. Class 3 will be
tested for desert or low clouds, class 5 will be tested
for snow or low clouds, and class 9 will be tested for
cloudy or clear. A class is determined to be clear only
if it passes all the clear tests. Several tests are described
below.

1) RADIANCE THRESHOLD AND SPECTRAL
BRIGHTNESS TEMPERATURE DIFFERENCE TESTS

The clear testsused in the MODI S cloud mask algorithm
are used to check each class of the ML classification. For
example, during the daytime the difference BT,, — BT,
becomes large and negative because there is reflection of
solar energy at 3.7 um. This technique is very successful
at detecting low-level water clouds during the daytime.
For details of the clear test procedures, see Ackerman et
al. (1998). Only those classes passing &l the clear tests
continue to the variance image test.
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TABLE 5. Class center values of 11 classes at 1640 UTC 17 Dec 2000 (case 2). Units and definitions as in Table 4.

Features Water Land L. Cld Land Snow Undecided M.H. Cld Land H.Cld M.L.Cld M.H. Cld
Percentage 21.46 3.80 4.14 11.53 15.12 0.21 5.92 11.30 557 14.15 6.77
Class index 1 2 3 4 5 6 8 9 10 12 13
BAND 1 3.01 9.71 11.22 4.36 22.86 15.99 25.85 5.20 37.60 27.18 20.13
BAND 2 1.69 12.26 12.42 11.07 25.13 15.99 28.82 11.09 39.45 29.90 23.09
BAND 3 8.47 13.09 15.57 7.15 25.72 20.13 28.42 8.58 40.44 29.67 22.83
BAND 4 4,93 10.28 12.38 5.22 22.82 16.60 26.04 6.07 37.08 26.89 20.19
BAND 5 1.09 11.16 12.54 13.80 16.74 13.33 27.54 13.16 33.92 27.03 21.74
BAND 6 0.93 7.36 11.30 10.50 7.39 8.69 22.06 9.54 18.85 21.37 16.19
BAND 7 0.68 4.49 8.02 5.54 3.97 5.72 14.87 5.10 12.21 15.32 11.39
LSD-BAND 1 0.17 2.15 3.99 0.66 2.03 2.27 7.66 0.63 1.06 1.82 3.34
LSD-BAND 2 0.20 2.82 4.67 1.12 2.05 2.52 8.64 1.07 1.16 211 3.86
LSD-BAND 3 0.10 1.25 2.38 0.20 1.16 1.64 5.30 0.20 0.85 1.04 2.20
LSD-BAND 4 0.12 141 2.67 0.30 1.30 1.73 5.88 0.28 0.86 1.15 2.39
LSD-BAND 5 0.16 1.92 3.25 0.98 0.90 1.85 6.37 0.82 1.09 1.45 2.93
LSD-BAND 6 0.15 1.53 3.26 1.28 0.55 1.41 5.82 0.87 0.62 1.37 291
LSD-BAND 7 0.13 114 2.59 0.95 0.42 0.99 4.26 0.60 0.52 1.14 2.40
BAND 17 1.24 10.36 9.64 10.34 21.16 12.86 25.51 10.22 38.01 26.31 20.64
BAND 18 0.62 5.88 4.32 6.16 12.01 9.40 15.37 5.97 34.86 16.07 13.11
BAND 19 0.81 7.59 6.14 7.85 15.43 10.58 19.21 7.69 36.20 20.03 16.06
BAND 20 294.79 279.93 298.61 286.72 266.25 284.60 294.43  279.06 267.89 292.38 288.51
BAND 21 293.22 275.87 293.33 285.07 262.92 280.10 283.99 276.80 253.43 279.36 277.06
BAND 22 293.27 274.70 293.27 284.16 261.05 278.52 283.19 276.17 246.69 278.18 275.98
BAND 23 288.94 270.92 288.02 280.91 258.70 274.84 276.14 272.79 240.10 269.83 268.70
BAND 24 252.12 243.25 248.40 249.37 239.04 242.95 243.99 244.75 224.47 240.62 240.48
BAND 25 270.33 256.17 266.52 265.24 248.20 256.94 256.42 258.51 222.66 249.97 250.04
BAND 26 0.07 0.66 0.50 0.54 1.30 4.83 1.92 0.47 22.65 1.98 2.57
BAND 27 253.48 245.07 248.62 25259 239.79 244.29 248.18 246.79 220.95 243.78 243.06
LSD-BAND 27 0.37 0.42 0.44 0.30 0.34 9.29 0.35 0.32 0.82 0.30 0.40
BAND 28 267.26 255.15 26243 264.27 249.61 254.57 257.28 258.01 223.00 251.71 220.56
LSD-BAND 28 0.30 0.64 0.43 0.23 0.30 11.80 0.46 0.19 0.87 0.24 0.70
BAND 29 288.10 268.60 28355 279.92 256.63 270.14 267.63 271.89 225.22 258.10 258.43
BAND 31 291.66 269.30 285.64 281.47 256.63 270.36 268.89 273.16 222.58 259.26 258.24
LSD-BAND 31 0.26 2.12 1.69 0.57 0.59 18.32 181 0.50 114 0.52 1.95
BAND 32 290.79 268.78 28457 28145 256.28 269.06 268.41 273.29 221.76 259.17 257.28
BAND 33 269.13 255.56 264.32 265.01 248.85 254.16 256.23 258.84 219.66 250.64 248.89
BAND 34 254.98 246.68 252.01 253.61 242.65 244.51 247.62 249.01 218.52 244.07 242.80
BAND 35 246.68 240.46 24388 24579 237.71 238.38 241.17 241.96 218.33 239.26 237.86
BT, BT, 0.77 0.48 101 -0.06 0.35 0.99 050 -0.11 0.85 0.15 0.99
BTy,«BT,, —-2.51 -0.71 —-212 -—164 0.01 —0.66 -124 —-1.17 2.65 —-1.01 0.19
BT, —BTs, 37.70 23.80 37.15 28.94 17.05 27.21 20.99 26.43 167 15.40 15.16
BT,+BT,, —-1.34 —5.76 -506 —-262 532 -566 —10.71 —-3.03 —21.15 -—1405 -—1261
BT,—BT,, -261 —1208 —-1226 —-514 -971 1265 —-2425 —-6.00 —4514 —-3296 —30.62
BT,BT, 1.16 —2.69 -3.11 072 —-2.36 —4.38 —-7.29 037 -—1829 -1064 —11.67
BT,,—BT., 8.64 6.19 8.14 7.92 5.08 6.50 6.46 6.91 0.21 5.15 4.86

1—BTag -1.27 —6.32 —-720 —252 —4.39 -6.99 —1353 —-296 —-2399 —1891 —-18.02

2) VARIANCE IMAGE TESTS

The empirical interpretation of the variances can be
summarized as (a) low VIS/NIR bands 1-7 variances
and low IR 11-um variances correspond to surface or
homogeneous thick clouds; (b) relatively low VIS/NIR
bands 1-7 variances, and high IR 11-um variances cor-
respond to cirrus over surface; (c) relatively high VIS/
NIR bands 1-7 variances and low IR 11-um variances
correspond to quasi-total coverage by middle-ow
clouds; (d) high VIS/INIR bands 1-7 and IR 11-um
variances with correlated variations, correspond to
mixed coverage by thick high and middle clouds. Using
this interpretation, IR 11-um variances and VIS/NIR
bands 1-7 variances allow the distinction between par-

tial broken clouds, semitransparent clouds, and surfaces
that could not be separated in IR-VIS/NIR images (Seze
and Desbois 1987). The combination of spectral (IR 11-
um window and VIS/NIR) and spatial (LSD of VIS/
NIR bands 1-7 and IR 11-um window) information may
allow a better determination of the surface and cloud
types. When the clouds form homogeneous layers, they
produce partial coverages of the pixel or present local
variations in the optical properties.

b. Second step: The identification of surface types for
clear classes

This relies mainly on VIS/NIR bands 1 and 2 reflec-
tance and VIS/NIR bands 1-7 variance information.
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FiG. 6. (left) MODIS cloud mask and (right) ML classification mask. Time is 1640 UTC 17 Dec 2000 for case 2.
The four boxes in the right-hand panel represent four classes for scatterplots in Fig. 8.

* Clear water class: band 2 has low reflectance, while
band 1 has relatively high reflectance. Very homo-
geneous in bands 1-2 and IR 11-um variance images.

 Clear land class: low bands 1 and 2 reflectance, aso
homogeneous in bands 1 and 2 variance images.

« Clear snow or iceclass. high bands 1 and 2 reflectance,
relatively low bands 6 and 7 reflectance, very ho-
mogeneous in al VIS/NIR bands 1-7 and IR 11-um
variance images.

» Desert class: relative high reflectance in all VIS/NIR
bands 1-7 images, also very homogeneous in most
VIS/NIR bands 1-7 images and IR 11-um window
image.

* Coastal class: low bands 1 and 2 reflectance; relatively
high variance in bands 1 and 2 variance images, as
well asin the IR 11-um variance image.

c. Third step: The identification of cloud types (e.g.,
low/middle/high clouds)

The identification is based on the VIS/NIR bands 1—
2 reflectance and IR 11-um window brightness tem-

peratures, as well as the variance images in VIS/NIR
bands1-7 and IR 11 wm mentioned above. For example,
thick high clouds correspond to high reflectance, low
IR 11-um window brightness temperatures, low VIS/
NIR bands 1-7 variances, and low IR 11-um variances.
In contrast, the cirrus clouds correspond to relatively
low VIS/NIR bands 1-7 variances and high IR 11-um
variances. In the IR 11-um window image, high clouds
are usually colder than the lower clouds.

6. ML classification with MODIS multispectral
band measurements

Three cases are presented. Each case contains a gran-
ule of MODIS data (2030 by 1354 pixels from a 5-min
satellite pass).

a. Casel

MODIS NIR band 2 and IR 11-um window images
at 1635 UTC 5 September 2000 are presented in Figs.
1 and 2 (left panels), respectively. Each classisinitially
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defined by the MODI S cloud mask algorithm (see Table
2 for theinitial classindex). The ML classification pro-
cedure ends after six iterations. Thirteen classes are ob-
tained whose center values are given in Table 4. The
identifications given to the classes are based on the pre-
viously described analysis.

Classes 1, 2, 3, and 4 correspond to clear surface: the
most homogeneous, spatialy, in VIS/NIR bands 1-7
and IR 11-um window, warm in the IR 11-um window,
and dark in the VIS/NIR bands 1 and 2 images, negative
values in BT, — BT,, image, and small values in the
BT,, — BT,, image.

Classes 5, 8, and 9 are mid-to-low clouds (**M.L.
Cld” in Tables 4-6) or mixed clouds: high IR 11-um
variances with very high variances in VIS/NIR bands
1-7, and large negative valuesin the BT, — BT,, im-
age.

Class 6 corresponds to a class of mixed surface types
(““Mixed” in Tables 4—6): high variancesin IR 11 um
and relatively low variances in VIS/NIR bands 1-7,
warm in IR 11-um window and dark in VIS/NIR bands
1 and 2 images, and small values in the BT,;, — BT,
image.

Classes 10 and 12 correspond to middle-high (**M.H.
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BT, and (right) MODIS band 6 image. Time is 1645 UTC 17 Dec 2000 for case 2.

Cld” in Tables 4-6): very bright in VIS/NIR bands 1
and 2 images, relatively low variancesin VIS/NIR bands
1-7 and IR 11 um, large negative values in the BT,
— BT,, image, and relatively high reflectance in 1.38-
©m image.

Class 13 corresponds to low clouds (L. Cld” in
Tables 4-6): low variances in IR 11 pum with warm
brightness temperature, high variances in VIS/NIR
bands 1-7, very bright in VIS/NIR bands 1 and 2 im-
ages, and large negative values in the BT,; — BT,,
image.

Class 15 corresponds to high thick clouds (**H. Cld”
in Tables 4-6): relatively homogeneous in IR 11-um
window and VIS/NIR bands 1-7, coldest in IR 11-um
window and brightest in VIS/NIR bands 1 and 2 images,
large negative values in the BT, — BT,, image.

Class 11 is an undecided class or mixed types: small
percentage of pixels in the image, and huge variances
in IR bands 27-28 and IR 11 um.

Classes 7 and 14 were not found in this case.

Figure 3a shows the cloud mask (left) and classifi-
cation mask (right). Using 15 unique colors in the dis-
play was not deemed practical for interpretation so we
have combined the classes into eight types. In general,



FEBRUARY 2003

BT11 (K)

LI ET AL.

BT11(K)

217

BT11 (K)

80 T T T T 40 20 71— T
su_ -
‘ 320 | 4 18| .
— r — !
£ 40 1 A [ o
(4] w -
o 2 ‘ 1 & 3 B
& 30 [ 1 1 s 2 P
m m E
20 |- . or t ] 1
I ’
10 L L L 1 L 1 l i L o 1 1
210 220 230 240 250 280 270 210 220 230 240 2% 280 270 230 240 250 280 270
BT11 (K) BT11(K) BT11 (K)
13 T T T T 10 | T T T 4 5 SRR RS RLE
o Box A (snow)
| o Box B (H. Cid) + L
g + Box C (Mulli—class) g 8 I + ]
€0 | +Box D (M.L.Cli) i = g a2t -
= = 1 5
[ [ [ |
m 4 E rys 5 i -
LRS - E of 6 % -
3 5 .| I
_ 2 1
u_‘l.].ll L U‘J.l.l... .o LAl BRPCS] N LI [STIC] (o EA LR
210 220 230 240 250 260 270 210 220 230 240 230 200 270 210 220 230 240 250 260 270

Fic. 8. Scatterplots of (panel 1) band 2, (panel 4) LSD band 2, (panel 2) band 6, (panel 5) LSD band 6, (panel 3) BT, —

(panel 6) BT, —

BT,,, and

BT,; vs IR 11-um window brightness temperature for the four boxes outlined on the right panel of Fig. 6 (representing

snow, low clouds, class of mixed cloud types, high clouds, from left to right, respectively). Panel numbers are located near the center of

each panel.

the cloud mask and the classification mask have similar
cloud—clear separations, however, the ML classification
changes the cloud types of the initial classification ob-
tained from the MODI S cloud mask. In addition, some
water pixels in western Lake Erie, initially assigned to
low clouds by the MODIS cloud mask algorithm, are
classified as clear water by the ML classification, which
can be clearly seen from the broad cloud mask and
classification mask shown by Fig. 3b. This might be due
to the relatively high VIS/NIR bands 1-2 reflectance of
clear water pixels over that area, which are not well
separated from the low clouds by the MODIS cloud
mask algorithm. Another possibility is that the thresh-
olds used in the cloud mask algorithm are not dynamic
and they may not be indicative of the spectral charac-
teristics over that areain this particular case. If the water
scene and low clouds can be separated by some of those
spectral and spatial characteristics, the ML classification
process should be able to separate them.

Validation of cloud classification is always difficult
(Rossow and Garder 1993). Two important stepsin val-
idation are image interpretation and quantitative anal-
ysis. Figure 4 shows the MODI S composite image from
bands 1, 4, and 3 (left) and BT4, — BT,, image (right).
It shows the cloud pattern depicted in both images of
Fig. 4 iswell identified by both the MODI'S cloud mask
and ML classification mask in Fig. 3a.

b. Case 2

As the cloud mask algorithm is sometimes less reli-
able where snow cover exists, classification of awinter
case is demonstrated here. Figure 5 shows the band 2
(left) and its variance (right) images for 1640 UTC 17
December 2000. In general, cloud and snow appear very
similar in the 0.86-um (band 2) image, even in the
variance images for VIS/NIR bands 1-7. However, they
appear dissimilar in the band 6 (1.64 wm) image. Eleven
classes are obtained in this case whose class center val-
ues are given in Table 5. The identifications given to
the classes are as follows.

Classes 1, 2, 4, and 9 are clear surface: very spatially
homogeneous in the IR 11-um window and VIS/NIR
bands 1-7 images, warm in the IR 11-um window and
dark in VIS/NIR bands 1 and 2 images, and small values
in BT,, — BT, image.

Class 3 is low clouds: relatively low variance in IR
11-pm window, brighter in the VIS/NIR bands 1 and
2 images than classes 2 and 9, and very high variances
in VIS/NIR bands 1-7.

Class 5 corresponds to snow: very homogeneous in
IR 11-um window and VIS/NIR bands 6-7 images,
bright in VIS/NIR bands 1 and 2 but relatively dark in
bands 67 images, and small values in BT,; — BT,
image.

Classes 8 and 13 correspond to middle-high clouds



218

or middle-low clouds: high variancesin VIS/NIR bands
1-7 and IR 11 pm, bright in VIS/NIR bands 1 and 2
images, and large negative values in BT,;, — BT, im-
age.

Class 10 corresponds to high thick clouds: relatively
homogeneous in both the IR 11-um window and VIS/
NIR bands 1-7 images, very cold in IR 11-xm window,
very bright in VIS/NIR bands 1 and 2 images, and large
negative values in BT,; — BT, image.

Class 12 corresponds to middle-low clouds: low var-
iancesin IR 11 um, relative high variancesin VIS/NIR
bands 1-7 bright in the VIS/NIR bands 1 and 2 images
and large negative values in BT,; — BT, image.

Class 6 is an undecided class or mixed types: small
percentage of pixelsin the image, with huge variances
in IR bands 27-28 and IR 11 um.

Classes 7, 11, 14, and 15 are not found in this case.

Figure 6 shows the associated MODIS cloud mask
(left) and ML classification mask (right). In the cloud
mask algorithm, snow is not well separated from the
low cloudsin the eastern part of the United States. How-
ever, it iswell separated in the ML classification. Figure
7 showsthe MODISBT,, — BT, image (left) and 1.64-
um (band 6) image (right). Usually, clouds are reveal ed
by large negative values in BT,; — BT,, due to the
strong solar reflection of the 3.7 um over the clouds.
However, the solar reflection of 3.7 um over clear sur-
faces, even over the snow cover, isusually small. There
are large negative values over the northeast coastal re-
gion and over the Lake Michigan area where clouds
exist. The band 6 image also shows the cloud pattern
in this area.

Figure 8 presents the scatterplots of band 2 (panel 1),
LSD band 2 (panel 4), band 6 (panel 2), LSD band 6
(panel 5), BT,, — BT,; (panel 3), and BT,, — BT,
(panel 6) versus BT, for the four boxes outlined in the
right panel of Fig. 6 (representing snow, low clouds,
class of mixed cloud types, and high clouds, respec-
tively, from left to right). High clouds are well separated
in panel 1; snow is well separated by band 6 in panel
2; al four objectives are well separated by BT,, — BT,
image in panel 6. This figure illustrates that there is
significant separation between snow and clouds in the
ML classification procedure.

Figure 9 shows the snow cover map for 17 December
2000 from the National Oceanic and Atmospheric Ad-
ministration (NOAA; available online at http://
www.nohrsc.nws.gov/index.html). This snow chart
was created from various sources of data including
ground weather observations, Defense Meteorological
Satellite Program (DMSP) microwave products, and
other polar and geostationary satellite observations.
Snow covers most of the northern United States; how-
ever, Lake Michigan was shown as open water in this
chart, which is consistent with the ML classification
results.
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Fic. 9. NOAA's snow and ice chart on 17 Dec 2000. The white
color is snow cover.

c. Case 3

The challenge of detecting clouds over desert region
is the focus of case 3. Figure 10 shows band 2 (left)
and its variance (right) images of an African Sahel/
desert scene at 0935 UTC 5 November 2000, indicating
clouds in the southern part of the image. The MODIS
cloud mask algorithm sometimes has difficultiesin des-
ert areas since the VIS/NIR bands 1 and 2 reflectance
is usually higher over clear desert than over other clear
vegetated land, and sometimes clear desert is not well
separated from low clouds in the MODIS cloud mask
algorithm. Twelve classes are obtained from the cloud
mask algorithm and the ML classification in this case;
the class center values are given in Table 6. The iden-
tifications given to the classes are as follows.

Classes 1, 4, and 9 are clear surface: homogeneous
in IR 11-pm window, dark in VIS/NIR bands 1 and 2
images, warm in IR 11-um window image, and small
values in the BT,, — BT, image.

Classes 2 and 3 are clear desert surface: very spatially
homogeneousin IR 11-um window and VIS/NIR bands
1-7 images, very warmin IR 11-um window, relatively
bright in most VIS/NIR bands 1-7 images, and small
values in the BT,, — BT, image.

Class 8 corresponds to middle-to-low clouds: rela-
tively bright in the VIS/NIR bands 1 and 2 images, low



FEBRUARY 2003

LI ET AL.

0 10 20 30 40 50 60

219

0 1 2 3 4

Fic. 10. (left) The MODIS band 2 image and (right) its variance image. Time is 0935 UTC 5 Nov 2000 for
case 3.

variances in VIS/NIR bands 1-7, very high variances
in IR 11-um, and large negative values in the BT, —
BT, image.

Class 10 corresponds to high clouds: brightest in VIS/
NIR bands 1 and 2 images, coldest in IR 11-um window
image, very homogeneous in VIS/NIR bands 1-7 im-
ages, relative high variances in IR 11 um, and large
negative values in the BT,, — BT, image.

Classes 11 and 12 correspond to middle-to-low clouds
or middle-to-high clouds: bright in VIS/NIR bands 1
and 2 images, high variances in VIS/NIR bands 1-7,
and IR 11 um, and large negative valuesin the BT,; —
BT, image.

Classes 13 and 15 correspond to middle-to-low
clouds: bright in VIS/NIR bands 1 and 2 images, very
high variancesin VIS/NIR bands 1-7, relative high var-
iances in IR 11 pum, and large negative values in the
BT,, — BT, image.

Classes 5, 7, and 14 are not found in this case.

Figure 11 shows the MODIS cloud mask (left) and
ML classification mask (right) for this case. In the
MODIS cloud mask algorithm, a drought lake was mis-
identified (classified as clouds) but it is recognized by
the ML classification (classified as water class in the

right panel of Fig. 11). Some striped lines existed in
the cloud mask due to the use of band 36 in the cloud
mask algorithm; band 36 was not used in the ML clas-
sification. The cloud coverage from the cloud mask is
very close to that of the ML classification results al-
though there are significant cloud type changes (e.g.,
less high clouds in the ML classification than in the
MODIS cloud mask). Also, the MODIS cloud mask has
more clear desert area than the ML classification.

Figure 12 shows the MODIS BT, — BT,, image
(left) and 11-pm image (right). Clouds indicate positive
valuesinthe BT, — BT,, image; large negative values
in the BTy, — BT,, image here should correspond to
desert since the surface emissivity has the potential to
be significantly lower at 8.6 um than at 11 um in desert
regions (Salisbury and D’ Aria 1992).

The initial classification results from the cloud mask
may be sensitive to the thresholds in some regions, es-
pecially where desert exists. In order to test the sensi-
tivity of both the MODIS cloud mask and ML classi-
fication algorithms to the thresholds used in the MODIS
cloud mask, the thresholds were changed in the MODIS
cloud mask algorithm. Some arid and semiarid zones
were purposefully misidentified as vegetated land,
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Fic. 11. (left) MODIS cloud mask and (right) ML classification mask. Time is 0935 UTC 5 Nov 2000 for case 3.

where visible band thresholds are lowered. The MODIS
cloud mask then misinterpreted the brighter than ex-
pected surface reflectances as clouds. Figure 13 is the
MODIS cloud mask (left) with altered (incorrect)
thresholds and its corresponding ML classification mask
(right). In the cloud mask algorithm, many desert pixels
are mistaken for lower clouds due to inappropriate
thresholds; however, thoselow cloud pixelsare correctly
reclassified as desert after the ML classification. Al-
though there are some differences for the desert-land
separation between the two classifications (see Figs. 11
and 13), the clear—cloud separation is amost the same
in both classifications. This offers some reassurance that
the ML classification procedure is relatively insensitive
to the thresholds used in the MODIS cloud mask al-
gorithm.

7. Discussion

Classification accuracy, computation efficiency, and
separability of each class are very important consider-
ations when applying this technique in the MODISreal -
time data processing.

Classification accuracy is important, and severa
sources of errors should be addressed. First, a specific

type of scene or cloud may not be classified or separated;
this usually happens when the class appears very close
to another class in the MODIS visible and infrared im-
agery. For example, snow sometimes appears very sim-
ilar to low clouds and is difficult to separate; it may
simply be misclassified as low clouds. Second, pixels
at the boundaries between two different classes may be
assigned to the wrong class. When pixels are close to
two classes, those pixels are difficult to assign. Third,
some classes may be incorrectly identified; this happens
to some low cloud types. In general, clear scenes can
be identified with considerable confidence since they
are warmer in the IR window band, have lower reflec-
tance in the visible bands, and are more homogeneous
in the LSD images. Some ML classification errors can
be reduced by using amore accurateinitial classification
or using more a priori knowledge. A better initial clas-
sification requires less adjustment for each class in the
iterations and reduces the number of iterations, therefore
producing more reliable final classification results.
However, a poor initial classification requires more ad-
justments for each class and more iterations, therefore
producing a classification result that might not be stable.
In addition, instrument noise and calibration errors may
affect the cloud mask algorithm, and thus the classifi-
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cation results. Accurate calibration is necessary to avoid
errorsin the cloud mask since the cloud mask algorithm
uses a variety of thresholds. Mathematically, the itera-
tive classification procedure is convergent; however, the
convergence speed and stability are very dependent on
initial classification, separability of different classes, se-
lection of features, and definition of distances used to
separate classes in the classification algorithm.
Computation efficiency isimportant for real-timedata
processing, as with MODI S data from a direct broadcast
stations. The ML classification procedure for aMODIS
granule takes several minutes on a Silicon Graphics,
Inc., Origin 2000 computer or a Sun UNIX workstation.
More iterations require more computation time, with the
iteration number depending on the initial classification.
A coarse initial classification—for example, a simple
visible and infrared box classification (Li and Zhou
1990)—will need more iterations. A better initial clas-
sification, for example, one based on the cloud mask in
this paper, needs fewer iterations for convergence. De-
termination of the iteration convergence is based on a
classification matrix C(i, j) that indicates the percentage
of pixels of the ith class of the last iteration assigned
to the jth class after the current iteration. Figure 14
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FiG. 12. (left) MODIS BT, — BT,, image and (right) 11-um image. Time is 0935 UTC 5 Nov 2000 for case 3.

shows the classification matrix of the first iteration (Fig.
14a), the third iteration (Fig. 14b), and the sixth iteration
(Fig. 14c) of case 1. It can be seen from Fig. 14 that
there are significant changes from the first iteration to
the third iteration, but the matrix tends to the diagonal
after the sixth iteration indicating convergence in the
classification procedure. Usually, six iterations produce
stable classification results.

Separability is very important in the classification. In
general, if two classes are separated by a spectral band
or aspatial characteristic, they are separablein the clas-
sification. Figure 8 demonstrates that several classes
have different spectral or spatial characteristics. In order
to further analyze the separability of two different clas-
ses, the distance between each class and its neighbor
class (a neighbor class is defined as its nearest class in
terms of distance) is calculated. The distance between
two classes w; and w; is defined by

(4)

where 3, is the covariance matrix for all pixels. The
uncertainty in the distance, or maximum noise distance,
can be estimated by Eq. (4) as

D (i, ""j) = (m — I‘vj)TEfl(Mi - ”’j)v



FEBRUARY 2003

‘Water Land Desert Snow

LI ET AL.

223

Mixed ML Cld

MH. Cid

H. Cld

FiG. 13. (left) MODIS cloud mask with alternate (incorrect) thresholds and (right) its corresponding ML classification
mask. Time is 0935 UTC 5 Nov 2000 for case 3. This figure is part of the sensitivity study.

D (i, my) = 4" 2 (i — m)l, (5

where 7 is the noise vector for each feature used in the
ML classification. Figure 15 shows the distance between
each class and its neighbor class, as well as the maxi-
mum noise distance based on the classification for case
1. In Fig. 15, for example, C2—-C4 means that class 4
is the neighbor of class 2. From Fig. 15, most classes
are well separated, but classes 2 and 4 are very close
and thus not well separated (both class 2 and 4 are clear
land in this example). In general, most classes from the
classification procedure should be separable from each
other. All classes should be separable since the class
distances are all larger than the maximum noise dis-
tances. Note that the distance between a cloud class and
its nearest clear neighbor class can aso be used as a
confidencelevel for thiscloud classin ML classification.
For example, if a low stratiform class is close to its
nearest clear neighbor class, say snow class, then alow
confidence level should be assigned to this cloud class.

Use of the variance images will improve the accuracy
of ML classification. Figure 16 is similar to Fig. 6 but
the ML classification mask in the right panel does not

use VIS/NIR bands 1-7, IR bands 27-18, and IR band
31 variance images. More clouds are detected by ML
classification in Fig. 16 in southern Florida when com-
pared with the classification mask in Fig. 6, which in-
cludes all variance images. This might be due to the
similar appearance of clouds and surface in that areain
both VIS/NIR bands 1-2 and IR 11-um window images,
but they should have significantly different appearances
in some of the variance images. In addition, some clear
land pixels in southern Florida are classified as mixed
surface type by ML classification without variance im-
ages, indicating that variance images play an important
rolein identifying some surface types. The classification
matrix was computed to indicate the percentage of pixels
intheith class of ML classification with varianceimages
assigned to the jth class of ML classification without
variance images. It shows that class 5 of snow has al-
most no change, indicating that the snow detection is
less sensitive to the variance images. Some pixels of
class 4 (clear land) in the ML classification with LSD
have changed to class 6 (mixed surface types) in the
ML classification without LSD (see Table 5 for the 11
classes).
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Fic. 14. MODIS ML classification matrix of (a) the first iteration,
(b) the third iteration, and (c) the sixth iteration of case 1. Time is
1635 UTC 5 Sep 2000.

The size of the image can also influence the classi-
fication results. Currently, a granule of MODIS data
(2030 by 1354 pixels) is used for a scene classification.
On one hand, if the size of the image is too small, there
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might be fewer classes contained in the data and the
separability might be low since there is no spatia var-
iation in the imagery. On the other hand, if the size of
the image is too large, there may be too many spatia
variations in the imagery and too many classes so that
different classes may show similar spectral or textural
characteristics. A proper sizeis needed to allow enough
scene variation but to avoid classifying different classes
as one.

This ML classification procedure is pursued to extract
the maximum information from MODIS measurements,
to reduce the need for auxiliary data, and to have a
better understanding of the clear-sky and cloud vari-
ability. If auxiliary data is not available or, in certain
situations (such as in the presence of snow), the cloud
mask may not be of good quality, a simple visible-
infrared box classification can be used for initial clas-
sification (Li and Zhou 1990). Also, if the previous near-
time classification center values were stored as training
or reference data, these center values could also be used
for initial classification based on the Bayesian decision
method (Li et al. 1992).

8. Conclusions and future work

An ML classification initialized from the MODIS
cloud mask algorithm was used to classify the scenes
and clouds. The VIS/NIR and IR 1-km-resolution spec-
tral information and VIS/NIR/IR spatial information are
used in the classification. The aim of this paper is to
demonstrate the usefulness of multiband spectral and
spatial imagery information in identifying clear and
cloudy scene types, and to find an effective way to im-
prove the MODIS cloud mask when the thresholds used
in the cloud mask algorithm are not representative. Re-
sults of applying reflectance, BT, local variances, and
BT differences between two IR spectral bands confirm
the usefulness of these parameters for cloud—clear sep-
aration, aswell asfor separating between the cloud types
or clear types. The 1-km-resolution ML classification
mask improves the 1-km-resolution MODI S cloud mask
in some situations. Combined use of the MODIS cloud
mask and ML cloud classification improves identifica-
tion of clear skies in the MODIS imagery as well as
cloud types.

Future work includes more case studies, especialy in
polar regions and African deserts where the surfaces
may have a very unique appearance in the MODIS im-
agery. The utility of prior classification results as an
initial classification will be studied; for example, day-
time classification results can be used as the initial clas-
sification for nighttime classification since the cloud
mask is less reliable at night. In addition, the impact of
using classification in atmospheric profile and cloud re-
trievals will be studied. The size for image processing
and its effect on cloud classification will also be inves-
tigated. Global classifications will also be investigated
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Fic. 16. (left) MODIS cloud mask and (right) ML classification mask without variance images for case 2. Time is 1640

UTC 17 Dec 2000.
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and the maximum number of cloud classes will be ex-
plored.
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