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ABSTRACT 

 

This document provides a high level description of the physical basis of the enterprise 

fog/low stratus (FLS) detection algorithm. The enterprise FLS detection product is 

designed to quantitatively identify clouds that produce at least Marginal Visual Flight 

Rules (MVFR) conditions, defined as having a cloud ceiling between 1000-3000 ft (305-

914 m) above ground level (AGL) or surface visibility between 3-5 mi (4.8-8.1 km). 

Additionally, the enterprise FLS algorithm also quantitatively identifies clouds that 

produce Instrument Flight Rules (IFR) conditions, defined as having a cloud ceiling 

between 500-1000 ft (152-305 m) or surface visibility between 1-3 mi (1.6-4.8 km), or 

Low Instrument Flight Rules (LIFR), defined as having a cloud ceiling below 500 ft (152 

m) AGL or surface visibility less than 1mi (1.6 km). At night, the algorithm utilizes the 

3.9 and 11 m channels to detect FLS.  Fog/low stratus detection during the day is 

determined using the 0.65, 3.9, and 11 m channels.  The FLS detection algorithm 

utilizes textural and spectral information, as well as modeled relative humidity data and 

the difference between the cloud radiative temperature and surface temperature. The FLS 

detection scheme is probabilistic in nature using a naïve Bayes model to combine 

information from all the data.  At night, the cloud geometric thickness (FLS depth) is 

estimated using a 3.9 m based empirical relationship.  During the day, FLS depth is 

calculated using the cloud Liquid Water Path (LWP) product and an assumption 

regarding the vertical distribution of cloud water. 

 

There are a few important caveats that users need to be aware of. Passive satellite 

measurements do not provide direct information on cloud base or ceiling, so the 

properties of the cloud layer actually sensed by the radiometer must be used to indirectly 

infer information on cloud base.  Since the properties of the cloud base are not directly 

measured, variations in cloud base due to local boundary layer effects (e.g. local moisture 

sources/sinks and local turbulent mixing processes) generally will not be captured.  

Secondly, limited spatial resolution and errors in forecast model temperature data may 

make accurate fog/low cloud detection difficult in mountainous regions due to underlying 

terrain that may not be accurately accounted for. As such, not every surface observation 

underneath a detected low cloud will necessarily indicate a ceiling below 3000 ft AGL or 

surface visibility less than 5 miles, however, when pixels with Visual Flight Rules (VFR) 

conditions are included the probability is usually relatively low, which is desirable. 

 

The enterprise fog/low cloud detection algorithm is required to achieve a detection 

accuracy of 0.70 and thickness accuracy of within 500 m.  Validation efforts indicate the 

algorithm meets these specifications. 



 

 11 

1 INTRODUCTION 
 

1.1 Purpose of This Document 

 

The fog/low cloud detection algorithm theoretical basis document (ATBD) provides a 

high level description of the physical basis for detecting low cloud and fog which 

produces at least Marginal Visual Flight Rules (MVFR), Instrument Flight Rules (IFR) or 

Low Instrument Flight Rules (LIFR) conditions, with images taken by NOAA’s 

geostationary GOES-NOP imagers and the Advanced Baseline Imager (ABI).  MVFR 

conditions occur when the cloud base is between 1000-3000 ft (305-914 m) above ground 

level (AGL) or the surface visibility is between 3-5 mi (4.8-8.1 km), IFR conditions 

occur when the cloud base is between 500-1000 ft (152-305 m) or the surface visibility is 

between 1-3 mi (1.6-4.8 km), and LIFR conditions occur when the cloud base is less than 

500 ft (152 m) or the surface visibility is less than 1 mi (1.6 km). Rather than a yes/no 

binary mask, the fog/low stratus algorithm (herein called the FLS algorithm) provides a 

quantitative probability that MVFR/IFR/LIFR conditions are present as well as an 

estimate of the fog/low cloud thickness for a given satellite pixel.  

 

1.2 Who Should Use This Document 

 

The intended users of this document are those interested in understanding the physical 

basis of the FLS algorithm. This document also provides information useful to anyone 

maintaining or modifying the original algorithm.   

 

1.3 Inside Each Section 

 

 This document is broken down into the following main sections. 

 

 System Overview: Provides relevant details of current geostationary satellite 

imagers and a brief description of the products generated by the algorithm. 

 

 Algorithm Description: Provides all the detailed description of the algorithm 

including its physical basis, its input and its output. 

 

 Test Data Sets and Outputs: Provides a detailed description of the data sets used 

to develop and test the enterprise FLS algorithm and describes the algorithm 

output. 

 

 Practical Considerations: Provides a description of algorithm programming and 

quality control considerations.  
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 Assumptions and Limitations: Provides an overview of the current limitations of 

the approach and gives the plan for overcoming these limitations with further 

algorithm development. 

 

1.4 Related Documents 

 

 GOES-NOP/R Functional & Performance Specification Document (F&PS) 

 GOES-NOP/R Fog/Low Cloud Detection Validation Plan Document 

 Algorithm Interface and Ancillary Data Description (AIADD) Document 

 

1.5 Revision History 

 

 9/30/2009 - Version 0.1 of this document for the GOES-R FLS algorithm was 

created by Corey Calvert (UW-CIMSS).  Version 0.1 represents the first draft of 

this document. 

 

 7/31/2010 – Version 1.0 of this document for the GOES-R FLS algorithm was 

created by Corey Calvert (UW-CIMSS) and Michael Pavolonis 

(NOAA/NESDIS).  In this revision, Version 0.1 was revised to meet 80% 

delivery standards. 

 

 9/15/2010 – Version 1.0 of this document for the GOES-R FLS algorithm was 

revised by Corey Calvert (UW-CIMSS) and Michael J Pavolonis 

(NOAA/NESDIS/STAR).  In this revision, Version 1.0 was revised based on 

reviewer comments. 

 

 7/1/2011 – Version 2.0 of this document for the GOES-R FLS algorithm was 

created by Corey Calvert (UW-CIMSS) and Michael Pavolonis 

(NOAA/NESDIS/STAR). In this revision, Version 1.0 was revised to meet 100% 

delivery standards. 

 

 9/1/2015 – Version 3.0 of this document for the GOES-NOP FLS algorithm was 

created by Corey Calvert (UW-CIMSS) and Michael Pavolonis 

(NOAA/NESDIS/STAR) by editing and updating the previous version created for 

the GOES-R FLS algorithm. 

 

 7/18/2018 – Version 4.0 of this document for the enterprise FLS algorithm was 

created by Corey Calvert (UW-CIMSS) and Michael Pavolonis 

(NOAA/NESDIS/STAR) by editing and updating the previous version created for 

the GOES-NOP/GOES-R FLS algorithm. 
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2 OBSERVING SYSTEM OVERVIEW 
 

This section describes the products generated by the FLS algorithm and the requirements 

it places on the sensor.  

 

2.1 Products Generated 

 

The FLS algorithm is responsible for detecting fog/low stratus clouds (those that produce 

MVFR/IFR/LIFR Conditions) and estimating its geometric thickness (FLS depth). 

2.1.1 Product Requirements 

 

The F&PS requirements for fog/low cloud are listed in Table 1 and Table 2. 

 

Table 1: F&PS requirements for GOES-NOP fog/low cloud products. 

Name 

 

Fog/Low Stratus Clouds 

User & Priority 

 

Enterprise GS 

Geographic Coverage FD (full disk) 

Temporal Coverage 

Qualifiers 

 

Day and Night 

Product Extent Qualifier 

 

 

Quantitative out to at least 70 degrees LZA and qualitative 

beyond 

Cloud Cover Conditions 

Qualifier 

 

All cloud cover conditions 

Product Statistics 

Qualifier 

 

 

Over low cloud and FLS cases with at least 42% 

occurrence in the region 

Vertical Resolution 

 

0.5 km (Depth) 

Horizontal Resolution 

 

4 km 

Mapping Accuracy 

 

1 km 

Measurement Range 

 

0 – 100 % 

Measurement Accuracy 

 

70% Correct Detection 



 

 14 

Refresh Rate/Coverage 

Time Option (Mode 3) 

15 min 

Refresh Rate Option 

(Mode 4) 

5 min 

Data Latency 

 

159 sec 

Long-Term Stability 

 

TBD 

Product Measurement 

Precision 

Undefined 

 

Table 2 - F&PS requirements for ABI fog/low cloud products. 

Name 

 

Fog/Low Stratus Clouds 

User & Priority 

 

Enterprise GS 

Geographic Coverage FD (full disk) 

Temporal Coverage 

Qualifiers 

 

Day and Night 

Product Extent Qualifier 

 

 

Quantitative out to at least 70 degrees LZA and qualitative 

beyond 

Cloud Cover Conditions 

Qualifier 

 

All cloud cover conditions 

Product Statistics 

Qualifier 

 

 

Over low cloud and FLS cases with at least 42% 

occurrence in the region 

Vertical Resolution 

 

0.5 km (Depth) 

Horizontal Resolution 

 

2 km  

Mapping Accuracy 

 

1 km 

Measurement Range 

 

0 – 100 % 

Measurement Accuracy 

 

70% Correct Detection 

Refresh Rate/Coverage 

Time Option (Mode 3) 

Full Disk - 15 min 

CONUS - 5 min 

Refresh Rate Option 

(Mode 4) 

Full Disk - 15 min 

CONUS - 5 min 

Data Latency (Mode 3) Full Disk - 806 sec 
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 CONUS - 266 sec 

Long-Term Stability 

 

TBD 

Product Measurement 

Precision 

Undefined 

 

 

2.2 Instrument Characteristics  

 

The FLS algorithm will be applied to each earth-located satellite pixel with valid L1b 

data. Table 3 and Table 4 summarize the channels used by the FLS algorithm.  Even 

though the FLS algorithm directly utilizes only a few channels, it indirectly utilizes many 

more channels through its dependence of up-stream cloud mask, cloud phase, and 

daytime optical properties algorithms. 

 

Table 3: Channel numbers and wavelengths for the GOES-NOP imagers. 

Channel Number Wavelength (m) Used in FLS Detection 

1 0.65  

2 3.9  

3 6.7  

4 10.7  

6 13.3  

 

Table 4: Channel numbers and wavelengths for the ABI 

Channel Number Wavelength (m) Used in ACT 

1 0.47  

2 0.64  

3 0.86  

4 1.38  

5 1.61  

6 2.26  

7 3.9  

8 6.15  

9 7.0  

10 7.4  

11 8.5  

12 9.7  

13 10.35  

14 11.2  

15 12.3  

16 13.3  
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The FLS algorithm relies on spectral tests and is therefore sensitive to any imagery 

artifacts or instrument noise.  Due to the use of other cloud algorithms, any instrument-

related artifacts, which impact the cloud mask, cloud phase or cloud optical properties 

may impact the FLS algorithm. The channel specifications are given in the F&PS section 

3.4.2.1.4.0.  We are assuming the performance outlined in the F&PS during our 

development efforts. 
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3 ALGORITHM DESCRIPTION 
 

This section offers a complete description of the enterprise FLS algorithm. 

 

3.1 Algorithm Overview 

 

The enterprise fog/low stratus algorithm is designed to quantitatively identify clouds that 

produce at least Marginal Visual Flight Rules (MVFR) conditions, defined as having a 

cloud ceiling between 1000-3000 ft (305-914 m) above ground level (AGL) or surface 

visibility between 3-5 mi (4.8-8.1 km), Instrument Flight Rules (IFR) conditions, defined 

as having a cloud ceiling between 500-1000 ft (152-305 m) AGL or surface visibility 

between 1-3 mi (1.6-4.8 km), or Low Instrument Flight Rules (LIFR) conditions, defined 

as having a cloud ceiling below 500 ft (152 m) AGL or surface visibility less than 1 mi 

(1.6 km). The enterprise FLS products return the probability MVFR/IFR/LIFR conditions 

are present. At night, the algorithm utilizes the 3.9 and 11 m channels to detect FLS.  

FLS detection during the day is determined using the 0.65, 3.9, and 11 m channels.  The 

FLS detection algorithm utilizes textural and spectral information, as well as modeled 

relative humidity (RH) and the difference between the cloud radiative temperature and 

surface temperature.  The FLS detection scheme is probabilistic in nature using a naïve 

Bayes model to combine information from all the data.  At night, the FLS geometric 

thickness (FLS depth) is estimated using a 3.9 m based empirical relationship.  During 

the day, FLS depth is calculated using the cloud Liquid Water Path (LWP) product and 

an assumption regarding the vertical distribution of cloud water. 

 

The enterprise FLS detection algorithm derives the following products listed in the F&PS 

 Probability that MVFR conditions are present 

 Probability that IFR conditions are present 

 Probability that LIFR conditions are present 

 FLS depth (the geometric thickness of the stratus layer) 

 

All of these products are derived at the pixel level. 

 

In addition, the FLS detection algorithm derives the following products that are not 

included in the F&PS. 

 Quality Flags (defined in section 3.5.1.1) 

 Product Quality Information (defined in section 3.5.1.2) 

 Metadata (defined in section 3.5.1.3) 

 

3.2 Processing Outline 

 

As discussed earlier, the FLS algorithm is dependent on several cloud products.  Thus, 

prior to calling the FLS algorithm, the cloud mask, cloud phase, and daytime cloud 
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optical properties must be generated.  While the FLS algorithm does not directly utilize 

output from the cloud height algorithm, the daytime optical properties algorithm does 

depend on the cloud height output.  As such, the algorithm processing precedence 

required to generate the FLS products is as follows: cloud mask  cloud phase/type  

cloud height  daytime microphysical properties  FLS detection and depth. The FLS 

detection algorithm requires at least 3 scan lines of satellite data due to the spatial 

analysis that is utilized in the algorithm.  The processing outline of the FLS detection 

algorithm is summarized in Figure 1.
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Figure 1 - High-level flowchart of the enterprise FLS algorithm illustrating the main 

processing sections. 

 

The FLS algorithm is run in a framework that reads in all model and ancillary data, 

performs all clear sky radiance calculations, performs all necessary input/output and runs 

all other algorithms needed by the FLS algorithm. When the framework was run using 2 

km resolution GOES-16 full disk and CONUS images the entire run time from start to 

finish was 12 min 7 sec for full disk and 1 min 53 sec for CONUS. The following list 

breaks down how long each part of the framework took to run: 

 

Full Disk (pixel dimensions: 5424x5424): 

Overall runtime: 12:07 (minutes: seconds) 

 Reading of ancillary data, clear sky calculations, input/output, etc.: 8:10 

 Upstream Algorithms (cloud mask, cloud phase, etc.): 2:08 

 FLS algorithm: 1:49 

 

CONUS (pixel dimensions: 2500x1500): 

Overall runtime: 1:53 (minutes: seconds) 

 Reading of ancillary data, clear sky calculations, input/output, etc.: 1:17 

 Upstream Algorithms (cloud mask, cloud phase, etc.): 0:16 

 FLS algorithm: 0:20 

 

Note: These times are machine-specific, but they do give the user a rough idea of an 

example computational timeline. 

 

3.3 Algorithm Input 

 

This section describes the input needed to process the FLS algorithm. While the products 

are derived for each pixel, the use of spatial information requires knowledge of the 

surrounding pixels. Therefore, a minimum of 3 scan lines is required by the spatial 

analysis routines. 

 

3.3.1 Primary Sensor Data 

 
The lists below contain the primary and derived sensor data used by the FLS algorithm.  

By primary sensor data, we mean information that is derived solely from the imager 

observations and geolocation information. 

 

 Calibrated reflectances for the 0.65 m and 3.9 m channels 

 Calibrated radiances for the 11 m channel 

 Calibrated brightness temperature for the 11 m channel 

 Imager-specific L1b quality information from calibration for 0.65 m, 3.9 m and 

11 m channels 
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 Space mask (is the pixel geolocated on the surface of the Earth?) 

 Solar zenith angle 

 

3.3.2 Derived Data 

 

The FLS algorithm needs the following upstream-derived products: 

 

 Cloud mask output (product developed by cloud team) 

 Cloud phase output (product developed by cloud team) 

 Cloud Liquid Water Path (LWP) (product developed by the cloud team) 

3.3.3 Ancillary Data 

 

The following lists and briefly describes the ancillary data required to run the FLS 

algorithm.  By ancillary data, we mean data that requires information not included in the 

satellite imager observations or geolocation data. 

 

 Relative Humidity 

Fog/low stratus, like all water clouds are composed of water droplets formed as 

the moisture in the air condenses. Condensation occurs as the RH approaches 

100% and the air becomes saturated. In order to identify areas with high humidity, 

RH information from a Numerical Weather Prediction (NWP) model is required. 

Accurate information on the spatial gradients of the RH is very important so NWP 

models with the highest spatial resolution are preferred. The enterprise FLS 

algorithm was developed using the Rapid Refresh (RAP) and Global Forecast 

System (GFS) NWP models. The RAP is not a global model so three meso-scale 

Rapid Refresh (RAP) domains were used to cover Alaska at a spatial resolution of 

11.25 km, the continental United States (CONUS) at a resolution of 13 km and 

North America at a resolution of 32 km. Where the RAP was not available the 

GFS was used at a resolution of 0.5 deg (see Figure 6). For any given satellite 

point, data from the highest spatial resolution NWP model available is used. The 

GOES-NOP FLS algorithm was developed using 12-hour GFS forecasts 

initialized four times per day (0Z, 6Z, 12Z and 18Z) and 2- and 3-hour RAP 

forecasts initialized every hour. Although any model forecast in the 0-24 hr range 

is acceptable, it is highly recommended to use same model forecasts (or ones with 

higher spatial/temporal resolution) the algorithm was developed with. Details 

concerning the NWP data can be found in the AIADD Document. 

 

 Surface temperature 
Relative to other cloud types, fog/low stratus has a very similar temperature as the 

surface.  In order to identify clouds that have a similar temperature as the surface, 

surface temperature information from a NWP model is required.  Once again, 

although any forecast in the 0 to 24 hour range is acceptable, it is highly 

recommended to use same GFS (12-hr) and RAP (2- and 3- hr) model forecasts 
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(or ones with higher spatial/temporal resolution) the algorithm was developed 

with. Details concerning the NWP data can be found in the AIADD Document. 

3.3.4 Radiative Transfer Models 

 

The following lists and briefly describes the data that must be calculated by a radiative 

transfer model and derived prior to running the FLS detection algorithm.  See the AIADD 

Document for a more detailed description. 

 

 Clear sky transmittance profile for the 11 m channel 

The FLS detection algorithm requires a profile (from the surface to the 

Tropopause) of clear sky transmittance, where the transmittance at a given level 

in the profile is the upwelling clear sky transmittance integrated from that level to 

the top of the troposphere. 

 

 Clear sky radiance profile for the 11 m channel 

The FLS detection algorithm requires a profile (from the surface to the 

Tropopause) of clear sky radiance, where the radiance at a given level in the 

profile is the upwelling clear sky radiance integrated from that level to the top of 

the troposphere. 

 

3.4 Theoretical Description 

 

FLS detection is the process of determining the probability that pixels contain clouds 

with bases and/or corresponding surface visibilities that meet MVFR, IFR and LIFR 

requirements. The thickness of the fog/low stratus cloud is the vertical distance between 

the cloud base and the cloud top. The channel combination used to detect FLS depends 

on the solar zenith angle.  At night, the FLS detection algorithm directly utilizes the 3.9 

m (GOES-NOP channel 2, ABI channel 7) and 11 m (GOES-NOP channel 4, ABI 

channel 14) channels.  During the day, the FLS detection algorithm directly utilizes the 

0.65 (GOES-NOP channel 1, ABI channel 2), 3.9 m (GOES-NOP channel 2, ABI 

channel 7), and 11 m (GOES-NOP channel 4, ABI channel 14) channels.  The central 

wavelength of each channel will be used throughout this document in lieu of GOES-NOP 

or ABI channel numbers. 

 

3.4.1 Physics of the Problem 

 
Fog/low stratus has the following physical properties (among others) (e.g. Pruppacher 

and Klett, 1997; Rogers and Yau, 1989). 

 

 Composed mainly of liquid water 

 Low cloud base 
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 Fog/low stratus layers are highly spatially uniform in both temperature and 

reflectance since vertical velocities are typically weak 

 FLS has a similar temperature as the surface 

 Fog/low stratus is generally composed of small droplets due to the high 

concentration of cloud condensation nuclei in the boundary layer and reduced 

collision/coalescence processes 

 Low water content (primarily due to low vertical velocities). 

 

The above physical properties allow FLS to be differentiated from other cloud types 

(when it is the highest cloud layer) using a combination of visible, near-infrared, and 

infrared observations from passive satellite sensors like the GOES-NOP imager or ABI.  

For instance, a common method for detecting fog/low cloud at night involves using the 

difference between the 11- and 3.9-m brightness temperatures on a variety of 

instruments (Eyre et al. 1984; Turner et al. 1986; Ellrod 1995; Lee et al. 1997; Bendix 

2002). Ellrod (2003) also used the difference between the 11 m temperature and surface 

temperature at night to estimate the probability that cloud base heights were below 1000 

ft, the threshold for IFR. Daytime FLS detection is more challenging due to solar 

contamination of the 3.9 m channel.  Cermak and Bendix (2008) address this problem 

by using spatial metrics and the microphysical properties of clouds to estimate cloud 

thickness and height to detect fog/low cloud during the day for both MODIS and 

SEVIRI. The final enterprise algorithm will be a quantitative, probabilistic naïve 

Bayesian algorithm (see section 3.4.2.2.1) based on common FLS detection methods. 

3.4.2 Mathematical Description 

 

These subsections describe in detail how the FLS detection algorithm is implemented.  

First, the metrics used to determine if FLS is potentially present are described. 

 

It is important to note that the methodology used to detect FLS is solar zenith-angle 

dependent.  At solar zenith angles < 90°, the daytime methodology is used.  The nighttime 

methodology is used when the solar zenith angle > 90°. It should also be noted that FLS 

detection between solar zenith angles of 70°-90° (terminator) can be very difficult so 

temporal data (up to 1 hour old) is used to smoothly transition through the terminator 

region until the daytime methodology can again produce valid results. 

3.4.2.1 FLS Property Metrics 

 

A series of radiometric and textural metrics are used to determine which, if any, of the 

physical properties of FLS are present.  These metrics are described in the following 

sections. 

3.4.2.1.1 The 3.9 m Pseudo-emissivity 

 

The 3.9 – 11 m brightness temperature difference (BTD(3.9-11 m)) has been 

traditionally used to identify potential areas of fog/low cloud (e.g. Ellrod 1995).  In lieu 
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of the BTD(3.9-11 m), we utilize the 3.9 m pseudo-emissivity (ems(3.9 m)) shown in 

Equation 1.  The 3.9 m pseudo-emissivity is simply the ratio of the observed 3.9 m 

radiance (numerator) and the 3.9 m blackbody radiance calculated using the 11 m 

brightness temperature (denominator).  In Equation 1, BT is “brightness temperature” and 

B is the Planck Function.  The 3.9 m pseudo-emissivity is preferred over the BTD(3.9-

11 m) because it is less sensitive to the scene temperature.  The ems(3.9 m) was used 

previously by Pavolonis and Heidinger (2004) to infer cloud phase at night.  Figure 2 

shows the maximum amount of skill (see section 4.2.2.1 for details of skill score 

calculation) both the ems(3.9 m) and BTD(3.9-11 m) have when detecting fog/low 

clouds alone. SEVIRI data were used in this analysis. As Figure 2 shows, the ems(3.9 

m) parameter results in a greater possible skill score (blue line) when an optimal 

threshold of 0.7 is used compared to the optimal threshold of -7.0 for the BTD(3.9-11 

m). For the ems(3.9 m) parameter, a maximum skill score of 0.69 can be obtained 

compared to 0.59 when using the BTD(3.9-11 m), further backing up the reasoning 

behind using the ems(3.9 m) parameter over the BTD(3.9-11 m) for fog/low cloud 

detection.   

 

ems(3.9mm) =
Robs(3.9mm)

B(3.9mm,BT (11mm))
      Eq. 1 
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Figure 2 - The calculated skill score (blue line) obtained using the ems(3.9 m) 

parameter (top) or BTD(3.9-11 m) (bottom) when attempting to detect fog/low 

cloud alone. SEVIRI data were used in this analysis. The peak of the blue line 

represents the optimal threshold (x-axis) for each parameter, which resulted in the 

highest skill score. The red line represents the false alarm rate obtained using any 

given threshold. The dotted line represents the accuracy goal of the enterprise 

fog/low cloud detection algorithm. 

 

The same skill analysis was performed using the ems(3.9 m) and BTD(3.9-11 m) 

measurements from GOES-12. The results are shown in Figure 3. Unlike with SEVIRI 

data, the skill results using GOES-12 data were very similar. This is because the 3.9 m 

channel on SEVIRI has a significantly broader spectral width than current GOES 
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satellites (including the GOES-NOP and ABI) that overlaps the CO2 absorption band near 

4 m leading to the difference in skill between the ems(3.9 m) and BTD(3.9-11 m). 

On current GOES imagers the spectral width of the 3.9 m channel is smaller and does 

not overlap into the CO2 absorption band so there is less of a difference. Although the 

max skill scores were very similar, and to be consistent with the SEVIRI analysis, the 

ems(3.9 m) was chosen over the BTD (3.9-11 m) because it has less sensitivities to the 

spectral response functions. 

 

 

 

Figure 3 - The calculated skill score (blue line) obtained using the ems(3.9 m) 

parameter (top) or BTD(3.9-11 m) (bottom) when attempting to detect fog/low 

cloud alone. GOES-12 data were used in this analysis. The peak of the blue line 

represents the optimal threshold (x-axis) for each parameter, which resulted in the 
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highest skill score. The red line represents the false alarm rate obtained using any 

given threshold.  

 

3.4.2.1.2 Radiometric Surface Temperature Bias 

 

In window channels, infrared radiances can be used to retrieve the surface temperature 

(Tsfc) if the surface emissivity (sfc), total gaseous atmospheric transmittance (tatm), and 

the top of atmosphere upwelling clear sky atmospheric radiance (Ratm) are all known. The 

radiometric surface temperature bias can then be calculated as the difference between the 

modeled surface temperature (skin temperature) and the retrieved surface temperature. 

Equations 2 and 3 show the steps required to calculate the 11 m surface temperature.  

 

Rsfc(11mm) =
Robs(11mm)-Ratm(11mm)

tatm(11mm)
      Eq. 2 

 

Tsfc(11mm) =
B-1(11mm,Rsfc(11mm))

esfc(11mm)
      Eq. 3 

 

where B-1( ) is the inverse Plank function. The radiometric surface temperature bias is 

then calculated using Equation 4 by taking the difference between the radiometric surface 

temperature and the surface temperature from an NWP model. 

 

Tbias =Tsfc(11mm)-Tsfc(NWP)        Eq. 4 

 

In an ideal scenario, where the surface emissivity (sfc), total gaseous atmospheric 

transmittance (tatm), and the top of atmosphere upwelling clear sky atmospheric radiance 

(Ratm) are all known exactly and the modeled surface temperature was also correct, the 

radiometric surface temperature bias where clouds are not present should be very close to 

0 K. However, errors in the modeled surface temperature and the variables needed to 

calculate the radiometric surface temperature result in biases in the radiometric surface 

temperature difference calculation. Heidinger and Pavolonis (2009) used Advanced Very 

High Resolution Radiometer (AVHRR) data to determine the bias between the retrieved 

11 m surface temperature and modeled surface temperature where clouds were not 

present. That study found that the biases were the greatest over land around the local 

solar noon (when the Sun is directly overhead), while over water the biases stayed small. 

This is most likely due to solar heating of the land that may not be fully accounted for in 

the modeled surface temperature.  The same analysis performed by Heidinger and 

Pavolonis (2009) was replicated using GOES-12 data for a 24-hour period on July 1, 

2009 and is shown in Figure 4. The biases over land again were found to be greatest (~ 

66 K) around the local solar noon while the bias at night and over water remained 

relatively small (~ -22 K). Although currently not being taken into account, these biases 

may be helpful to diurnally correct the radiometric surface temperature bias for use in the 

fog/low cloud algorithm. 
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Figure 4 – 24-hour analysis of the clear sky, full disk radiometric surface 

temperature bias (GOES-12 11 m retrieved temperature – modeled surface 

temperature) over land (top) and water (bottom) at each pixel’s local solar time. The 
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black lines and symbols represent the average temperature difference while the red 

error bars represent the standard deviation. 

 

The radiometric surface temperature bias is useful for distinguishing FLS from liquid 

water clouds with high bases that do not meet the fog/low cloud criteria. Fog and low 

stratus clouds are close to the surface and therefore should have a radiometric surface 

temperature that is similar to the actual surface temperature. Higher-based and non-

stratus clouds tend to be colder than the surface and usually have a radiometric surface 

temperature that is significantly colder than the surface temperature.  Ellrod (2000) used a 

similar metric to help identify clouds that cause Instrument Flight Rule (IFR) conditions.  

Figure 5 shows an example RGB image and the corresponding radiometric surface 

temperature bias for a GOES-13 scene over the continental United States (CONUS). 
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Figure 5 – GOES-13 false color image (top) using the 0.65, 3.9 and 11 m channels 

(top) and corresponding radiometric surface temperature bias (bottom) calculated 

over CONUS from January 10, 2014 at 17:45 UTC. White-circled area shows 

stratus clouds with relatively low surface temperature bias meaning they are likely 

close to the surface. Red-circled area indicates stratus clouds with relatively large 

bias meaning they are not likely to be close to the surface. 

 

In Figure 5, the areas colored in yellow to red indicate where there is clear sky or very 

low clouds. The blue to black areas show where higher, colder clouds are likely present. 

 

3.4.2.1.3 Relative Humidity 

 

Fog and low stratus cloud form in environments where the air is saturated and the water 

vapor condenses onto condensation nuclei to form water droplets. For the enterprise FLS 

algorithm RH data is read in from NWP models such as the GFS and RAP. Although fog 

is defined as a cloud with a base that touches the surface, low stratus decks that meet 

MVFR/IFR/LIFR criteria often have ceilings above the surface where the RH will be 

higher than at ground level. For this reason the modeled surface RH and RH profiles are 

used for the enterprise FLS algorithm. Using the RH profiles the highest RH within a 

3000/1000/500 ft layer AGL are stored to help identify areas that meet MVFR/IFR/LIFR 

criteria respectively. An example of the maximum modeled RH in a 1000 ft layer AGL is 

shown in Figure 6. 
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Figure 6 – Maximum modeled relative humidity within a 1000 ft layer AGL from 

the RAP over CONUS for January 10, 2014 at 17:45 UTC. The white line denotes 

the boundary of the RAP domain to the west and the GFS to the east. 

3.4.2.1.4 Spatial Uniformity 

 

Fog and low cloud usually form in relatively stable environments with little vertical 

motion. For this reason fog/low cloud tend to be spatially uniform in both temperature 

and reflectivity. The spatial uniformity metric is used in the FLS detection algorithm for 

the 0.65 m reflectance. The spatial uniformity is determined by calculating the standard 

deviation of a 3x3 pixel array centered on any given pixel. The standard deviation of the 

9 pixels is stored as the spatial uniformity value for the central pixel. This calculation is 

performed for each valid pixel in a given scene.  

 

3.4.2.1.5 Identifying a Pixel’s Local Radiative Center 

 

As previously mentioned, during the daytime, FLS is generally spatially uniform in 

reflectance. Therefore, one of the parameters used to detect FLS during the day is the 

0.65 m reflectance spatial uniformity metric. However, using this spatial uniformity at 

cloud edges becomes troublesome. This is due to relatively low reflectance (unless 

snow/ice is present) from clear sky pixels adjacent to relatively high reflectance from 

cloud pixels at the cloud edge being included in the spatial uniformity calculation, 



 

 32 

causing the spatial uniformity metric to be relatively high near cloud edges compared to 

one that is calculated inside a cloud but away from the edges. To address this problem, 

the gradient filter procedure, which is described in detail in the AIADD Document, is 

used to determine the Local Radiative Center (LRC) of each valid pixel.  A pixel is valid 

if it has a valid Earth latitude and longitude and has valid spectral data (based on the L1b 

calibration flags).  The 0.65 m reflectance is used to compute the LRC.  The gradient 

filter inputs (which are described in detail in the AIADD Document) for this application 

are listed in Table 5. 

 
Gradient 

Variable 

Minimum Valid 

Value of Gradient 

Variable 

Maximum Valid 

Value of Gradient 

Variable 

Gradient 

Stop Value 

Apply Gradient Filter 

To 

0.65 m 

reflectance 

0.0 110.0 110.0 All pixels with a valid 

Earth lat/lon and valid 

spectral data for the 0.65 

m channel 

Table 5: Inputs used in calculation of Local Radiative Center (LRC).  The gradient 

filter function used in the calculation is described in the AIADD document. 

 

The gradient filter allows one to consult the spectral information at an interior pixel 

within the same cloud in order to avoid using the spectral information offered by pixels 

with a very weak cloud radiative signal or sub-pixel cloudiness associated with cloud 

edges.  Overall, this use of spatial information allows for a more spatially and physically 

consistent product.  This concept is also explained in Pavolonis (2011). Once the spatial 

uniformity at the LRC is performed on all pixels, a median filter is used to reduce noise 

in the scene. The median filter simply replaces the value at each pixel with the median 

value of a 3 x 3 pixel array centered on that pixel.  The generic median filter procedure is 

described in the AIADD Document.  

 

3.4.2.1.6 Cloud Mask and Phase 

 

The enterprise FLS detection algorithm requires cloud mask and cloud phase products. 

During the day, the cloud mask is used to eliminate all pixels flagged by the cloud mask 

as being cloud free. The cloud phase is used during the day and at night to determine 

which pixels contain clouds composed of liquid water, clouds composed of ice or 

multilayered clouds. The cloud mask output is not used at night, as it was not specifically 

designed to detect low clouds at night. The FLS algorithm currently does not specifically 

look to identify ice FLS due to its rare occurrence (temperature below -30F with a 

sufficient amount of water vapor), although previous analysis of ice fog events in the 

Yukon Territory of Canada indicate that ice fog events can be detected by the enterprise 

FLS algorithm because these cloud layers are often classified as mixed phase by the 

cloud phase algorithm. Figure 7 shows an example GOES-13 false color image and the 

corresponding cloud phase/type product.  
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Figure 7 - GOES-13 false color image (top) using the 0.65, 3.9 and 11 m channels 

with accompanying cloud type product (bottom) from the GOES-NOP cloud type 

algorithm. The cloud type category ‘SC’ refers to super cooled-type clouds. 

Therefore, light green areas indicate where clouds composed of super cooled water 
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droplets are present and light blue areas indicate where clouds composed of liquid 

water droplets are present. 

 

3.4.2.2 Assessing FLS Probability 

 

The enterprise FLS algorithm uses a “naïve Bayes” probabilistic approach to detect fog 

and low stratus clouds. Therefore, after the cloud mask and type check is performed the 

next step is to use the Bayesian model to estimate the probability that each pixel contains 

fog/low cloud. This is done using pre-determined look-up tables (LUT’s). The naïve 

Bayes model and associated LUT’s are described in detail in the following sections. 

 

3.4.2.2.1 Naïve Bayes Probabilistic Model 

 

The enterprise FLS algorithm utilizes a “naïve” Bayes probabilistic model and classifier 

(Zhang 2006; Domingos and Pazzani 1997). Wilks (2006) and Kossin and Sitkowski 

(2008) provide detailed descriptions of Bayes’ theorem along with examples of how it 

can be used for meteorological applications. The discussion herein summarizes the 

description of the naïve Bayesian probabilistic model from Kossin and Sitkowski (2008). 

  

The Bayes’ model returns a conditional probability that an “event” will occur given a set 

of measureable features and can be described by the following equation. 

 

P(Cyes |F) =
P(Cyes )P(F |Cyes )

P(F)
      Eq. 5 

 

The term P(Cyes ) is the probability that the event will occur given no measured features. 

For a meteorological application this can be represented by a climatological probability 

that the event occurs. P(F |Cyes )  represents the conditional probability that the set of 

features are observed given the event occurs and P(F) is the probability that the set of 

features are observed independent of event occurrence. The conditional probabilities 

P(F |Cyes ), and its counterpart P(F |Cno ), are obtained by training the model using 

known data. A problem that arises with this method is that even with a relatively small 

number of features the calculations can become very computationally expensive, growing 

exponentially with respect to the number of features used. A way around this issue is to 

make a reasonable assumption that all the features are independent of one another. This 

assumption produces the “naïve” aspect of the Bayes’ classifier (Kossin and Sitkowski 

2008). With this assumption the term P(F |Cyes )  can be represented by P(Fi |Cyes )
i=1

N

Õ  

where Fi  is a single feature of the set F  and Equation 5 can be written as 
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P(Cyes |F) =
P(Cyes ) P(Fi |Cyes )

i=1

N

Õ
P(F)

      Eq. 6 

 

Due to the relationship P(Cyes |F)+P(Cno |F) =1
 
the denominator in Equation 6 can be 

rewritten as 

 

P(F) = P(Cyes ) P(Fi |Cyes )+P(Cno )
i=1

N

Õ P(Fi |Cno)
i=1

N

Õ       Eq. 7 

 

Equations 6 and 7 now represent a more computationally friendly model initially 

described by Equation 5. 

 

For the enterprise FLS algorithm the “event” in the naïve Bayesian model is that FLS is 

present at a given pixel and the measureable features are RH, radiometric surface 

temperature bias, 3.9 m pseudo-emissivity (night only), 3.9 m reflectance (day only) 

and 0.65 m reflectance spatial uniformity (day only). The MVFR/IFR/LIFR 

climatological ‘yes’ probabilities for FLS (P(Cyes )) were calculated using 12 weeks of 

satellite data (one week for each month to cover all seasons) with collocated surface 

observations and are summarized in Table 6 and Table 7. 

 

Table 6 – Climatological probabilities that MVFR/IFR/LIFR FLS is present based 

on GOES-13-collocated surface observations of cloud ceiling and surface visibility 

calculated using 12 weeks of data from 2013.  

FLS Category Distinction 
Climatological Probability 

of FLS 

MVFR 0.23 

IFR 0.09 

LIFR 0.04 

 

Table 7 - Climatological probabilities that MVFR/IFR/LIFR FLS is present based 

on GOES-16-collocated surface observations of cloud ceiling and surface visibility 

calculated using 12 weeks of data from 2017-2018. 

FLS Category Distinction 
Climatological Probability 

of FLS 

MVFR 0.21 

IFR 0.10 
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LIFR 0.06 

 

To get to climatological ‘no’ probabilities for FLS (P(Cno ) ) you simply subtract the 

climatological ‘yes’ probabilities from 1.0. The following sections describe in detail the 

LUT’s that were created, or “trained”, to get the conditional probabilities using these 

features for the naïve Bayesian model. Final results of the FLS probability output are 

shown in section 3.4.2.2.4. 

3.4.2.2.2 Nighttime Probability 

 

There are two LUT’s used to determine the nighttime probability that FLS is present. The 

first nighttime LUT is dependent on the following two parameters: 

 

1. 3.9 m pseudo-emissivity (ems(3.9m)) 

2. Radiometric surface temperature bias (Tbias) 

 

The 3.9 m pseudo-emissivity, which was discussed in Section 3.4.2.1.1, is a key 

parameter in the nighttime FLS probability LUT.  Low water clouds with small particles 

have a smaller cloud emissivity at 3.9 m than 11 m.  In addition, FLS tends to be 

located in vertical layers that have a very small lapse rate, which limits the impacts of 

cloud transmission on the observed radiance.  Thus, the 11 m brightness temperature 

will be larger than the 3.9 m brightness simply because the 11 m cloud emissivity is 

greater than the 3.9 m cloud emissivity and the impact of cloud transmission is minimal 

due to the small lapse rate.  As such, the ems(3.9m) is most often << 1.0 when FLS is 

present, and clouds that have a ems(3.9m) << 1.0 will have a higher FLS probability.  

Figure 8 shows an example false color image and the corresponding ems(3.9m) for a 

GOES-13 scene over CONUS. Values of ems(3.9m) < 0.9 often correspond to areas of 

FLS. 
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Figure 8 – GOES-13 false color image (top) using the 13-11 BTD, 3.9-11 BTD and 11 

m channels and 3.9 m pseudo-emissivity (bottom) over CONUS on January 28, 

2007 at 7:45 UTC. The darker blue to purple areas indicate relatively low 3.9 m 
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pseudo-emissivities meaning they are clouds composed of small liquid water 

particles and might be FLS depending on their cloud ceilings. 

 

The radiometric surface temperature bias (see Section 3.4.2.1.2) is also a predictor in the 

FLS probability LUT.  As described earlier, FLS and low stratus clouds generally form in 

an isothermal or near-isothermal atmosphere with little vertical motion and vertical 

extent. Since fog/low stratus clouds are close to the ground the temperature of the cloud 

should be similar to the surface temperature. Due to the atmospheric lapse rate, clouds 

located above the boundary layer generally cool with respect to height; therefore cloud 

decks higher above the surface should be colder and thus have a larger radiometric 

surface temperature bias. 

 

The second nighttime LUT is dependent on relative humidity (see Figure 6). The 

maximum RH within the lowest 3000/1000/500 ft layer AGL is determined from the 

NWP surface RH and RH profiles and is used for the RH metric. As the modeled RH 

increases the probability that FLS is present also increases. In Figure 9, this relationship 

is illustrated as the probability that FLS is present in a given pixel increases rapidly as the 

RH increases above about 70%. 
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Figure 9 – Probability that fog/low stratus is present during day/night (red/black) 

given the modeled relative humidity. Surface observations of cloud ceiling and 

surface visibility were used to determine whether fog/low stratus was present. 

 

The two LUT’s described above must be created, or “trained”, separately for MVFR, IFR 

and LIFR conditions and for each NWP model. Therefore three sets of LUT’s are needed 

for both the GFS and RAP. 

 

3.4.2.2.2.1 Nighttime FLS Probability LUT’s 

 

Using the parameters described above in section 3.4.2.2.2, two sets of LUT’s were 

created to estimate the probability that fog/low stratus clouds are present given a pixel’s 

spectral information and modeled RH. Each set is used to determine the probability that 

MVFR, IFR and LIFR conditions are present. Twelve weeks of GFS, RAP and GOES-13 

data (one week for each month of 2013) along with collocated surface observations (see 

section 4.1.3 for information about source and accuracy) were used to create the GOES-

NOP LUT’s. Twelve weeks of GFS, RAP and GOES-16 data (one week for each month 

of 2017-2018) along with collocated surface observations were used to create the ABI 

LUT’s. Surface observations of cloud ceiling and surface visibility were used to identify 

pixels that met MVFR, IFR and LIFR criteria. These LUT’s represent the conditional 

probabilities that a pixel’s spectral information and modeled RH are measured given that 

FLS is and is not present. These conditional probabilities are used by the naïve Bayesian 

model to calculate the final probability that FLS is present at a given pixel. Once again, it 

is important to note that in order for the naïve Bayesian model to work properly the 

probability that a pixel’s spectral information and modeled RH are measured given that 

FLS is present (P(F |Cyes )) and also the probability given that FLS is not present (

P(F |Cno )) are needed. 

 

The first LUT is two-dimensional with respect to ems(3.9m) and surface temperature 

bias. The surface temperature bias is separated into 22 bins ranging from -20 K to 0 K 

with a bin size of 1 K. The first bin contains all values that are less than -20 K and the last 

bin is for all values greater than 0 K. The 3.9 m pseudo-emissivity is separated into 15 

bins ranging from 0.80 to 1.06 with a bin size of 0.02. Again, the first bin contains all 

values less than 0.80 and the last bin contains all values greater than 1.06. This results in 

a 2x15x22 bin array LUT where the first 15x22 array stores the ‘conditional yes’ 

probabilities and the second 15x22 array stores the ‘conditional no’ probabilities. All 

pixels with a collocated surface observation for the sample period were separated into 

their respective bin depending on their pseudo-emissivity and surface temperature bias. A 

count of surface observations that indicated FLS or no FLS was recorded for each bin and 

used to calculate the conditional probabilities (2 sets of probabilities - ‘conditional yes’ 

and ‘conditional no’) that specific values of a pixel’s 3.9 m pseudo-emissivity and 

surface temperature bias information were measured when fog/low stratus was or was not 

found to be present. The impacts of the conditional probabilities alone are difficult to 

fully-understand by simply illustrating them. The actual values of the conditional 
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probabilities are not really apparent until the Bayesian model combines them all together. 

For this reason, instead of showing the conditional probability LUT’s, the ratio of the IFR 

conditional yes/no probabilities for given a pixel’s measured 3.9 m pseudo-emissivity 

and surface temperature bias information (see Figure 10) is illustrated to show which 

values are generally associated with a higher probability of FLS. Again, the ratio that is 

shown is not a conditional probability (probability that the features’ measured values are 

seen when FLS is present or is not present) used in the naïve Bayesian model, but rather a 

ratio of the yes/no conditional probabilities given the measured features. 
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Figure 10 – Ratio of the nighttime IFR yes/no conditional probabilities depending 

on the 3.9 m pseudo-emissivity and radiometric surface temperature bias for 

GOES-NOP (top) and ABI (bottom). Surface observations of cloud ceiling and 

surface visibility were used to determine whether fog/low stratus, in this case IFR 

conditions, were present. 
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The second LUT is one dimensional with respect to RH. The maximum RH in the lowest 

3000/1000/500 ft layer AGL from the NWP surface RH and RH profiles is separated into 

100 bins ranging from 0-100 % with a bin size of 1 %. Once again a count of surface 

observations that indicated FLS or no FLS was recorded for each bin and used to 

calculate the conditional probabilities that specific values of a pixel’s RH was modeled 

when fog/low cloud was or was not determined to be present. Once again, instead of the 

conditional probabilities, the ratio of the IFR yes/no conditional probabilities is illustrated 

in Figure 11 to show which values of RH are generally associated with a higher 

probability of FLS. 

 

 

Figure 11 – Ratio of the IFR conditional yes/no probabilities from the modeled 

relative humidity. Surface observations of cloud ceiling and surface visibility were 

used to determine whether fog/low stratus, in this case IFR conditions, were present. 

 

3.4.2.2.3 Daytime Probability 

 

Like nighttime, two LUT’s are used during the day. The first daytime LUT used to 

estimate the probability that fog/low cloud is present is dependent on the following three 

parameters: 

 

1. 3.9 m reflectance 
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2. 0.65 m reflectance spatial uniformity at the LRC 

3. Radiometric surface temperature bias 

 

As previously discussed, fog/low stratus clouds tend to be spatially uniform in 0.65 m 

reflectance. This is because FLS and low stratus clouds form in relatively stable 

environments with little vertical motion. This is in contrast to cumulus clouds that form 

in unstable environments with large spatial variations in vertical motion creating the 

puffy, bubbly texture seen in the visible satellite channels. The 3x3 (pixel array) 0.65 m 

reflectance spatial uniformity calculation at the LRC, paired with the radiometric surface 

temperature bias, can be used to identify pixels that are located in a low cloud that is 

spatially uniform in reflectance, and therefore have a higher probability of being a stratus 

cloud meeting MVFR/IFR/LIFR criteria. The 0.65 m reflectance spatial uniformity 

metric is available for solar zenith angles less than 85° and, along with the radiometric 

surfaced temperature bias, is smoothed using a median filter to remove noise before use. 

The median filter simply replaces the value at each pixel with the median value of a 3 x 3 

pixel array centered on that pixel.  The generic median filter procedure is described in the 

AIADD Document. Figure 12 shows an example false color image, the 3.9 m 

reflectance and smoothed 0.65 m reflectance spatial uniformity at the cloud LRC for a 

GOES-13 scene over CONUS. FLS clouds usually consist of smaller water droplets 

(except for ice fog) compared to higher liquid water cloud layers. Smaller water droplets 

have a higher reflectivity at 3.9 m than larger droplets (see Figure 12). Therefore, the 

3.9 m reflectance is used to help identify clouds that are composed of smaller droplets.  
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Figure 12 – False color image (top), 3.9 m reflectance (middle) and the 3x3 pixel 

0.65 m reflectance spatial uniformity at the LRC (bottom) calculated for a GOES-

13 scene over CONUS on January 10, 2014 at 17:45 UTC. Circled area represents 
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cloud with relatively high 3.9 m reflectance and relatively low 0.65 spatial 

uniformity meaning it should have a high probability of being FLS. 

 

The second daytime LUT is the same as the nighttime LUT based solely on the maximum 

RH within the lowest 3000/1000/500 ft layer AGL.  
 
The two LUT’s described above must be created, or “trained”, separately for MVFR, IFR 

and LIFR conditions and for each NWP model. Therefore three sets of LUT’s are needed 

for both the GFS and RAP. 

 

3.4.2.2.3.1 Daytime Fog/Low Cloud Probability LUT 

 

Using the parameters described above, two sets of two LUT’s were created to estimate 

the probability that MVFR/IFR/LIFR FLS is present during the day. Twelve weeks of 

modeled RAP, GFS and GOES-13 data (one week for each month of 2013) along with 

collocated surface observations were used to create the GOES-NOP LUT’s. Twelve 

weeks of modeled RAP, GFS and GOES-16 data (one week for each month of 2017-

2018) along with collocated surface observations were used to create the ABI LUT’s. 

Again, surface observations of cloud ceiling were used to identify pixels that contained 

fog/low cloud meeting MVFR/IFR/LIFR conditions. 

 

The 3.9 m reflectance is separated into 4 bins (0-10, 10-15, 15-20, >20) with varying 

size in order to capture the most detail or the clouds of interest. The surface temperature 

bias is separated into 22 bins ranging from -20 K to 0 K with a bin size of 1 K. The first 

bin contains all values that are less than -20 K and the last bin is for all values greater 

than 0 K. The 0.65 m reflectance spatial uniformity is separated into 11 bins ranging 

from 0.0 to 20.0 with a bin size of 2.0. The last bin contains all values greater than 20.0. 

This results in a 2x4x11x22 bin array LUT where the first 4x11x22 array stores the 

‘conditional yes’ probabilities and the second 4x11x22 array stores the ‘conditional no’ 

probabilities. All pixels with a collocated surface observation for the sample period were 

separated into their respective bin depending on their 3.9 m reflectance, 0.65 m 

reflectance spatial uniformity and surface temperature bias. A count of surface 

observations that indicated FLS or no FLS was recorded for each bin and used to 

calculate the conditional probability that specific values of a pixel’s spectral, spatial and 

surface temperature bias information were measured when fog/low stratus was or was not 

found to be present. As previously noted, the impacts of the conditional probabilities 

alone are difficult to fully-understand by simply illustrating them as the true values of the 

conditional probabilities are not really apparent until the Bayesian model combines them 

all together. For this reason, instead of showing the conditional probability LUT’s, the 

ratio of the IFR conditional yes/no probabilities for given a pixel’s measured 3.9 m 

reflectance, 0.65 m reflectance spatial uniformity and surface temperature bias 

information (see Figure 13) is illustrated to show which values are generally associated 

with a higher probability of FLS. Again, the ratio that is shown is not a conditional 

probability (probability that the features’ measured values are seen when FLS is present 
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or is not present) used in the naïve Bayesian model, but rather a ratio of the yes/no 

conditional probabilities given the measured features. 

 

 

 

Figure 13 – Ratio of the daytime IFR yes/no conditional probabilities for pixels with 

3.9 m reflectance values between 15-20 % dependent upon the 0.65 m reflectance 

spatial uniformity and radiometric surface temperature bias for GOES-NOP (top) 

and ABI (bottom). Surface observations of cloud ceiling and surface visibility were 

used to determine whether fog/low stratus, in this case IFR conditions, were present.  
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The second daytime LUT is the same as the nighttime LUT based solely on the maximum 

RH within the lowest 3000/1000/500 ft layer AGL (Figure 11).  
 

3.4.2.2.4 Naïve Bayesian FLS Probabilities 

 

Once the LUT’s are trained the naïve Bayesian MVFR, IFR and LIFR probabilities can 

be calculated using the naïve Bayesian model and LUT’s described above. A median 

filter is used to smooth out any noise in the probabilities. The median filter simply 

replaces the value at each pixel with the median value of a 3 x 3 pixel array centered on 

that pixel.  The generic median filter procedure is described in the AIADD Document. An 

example of the IFR FLS probability output from the enterprise FLS algorithm for a 

GOES-13 daytime scene is shown in Figure 14.  

 

 

 

Figure 14 - GOES-13 false color image (left) using the 0.65, 3.9 and 11 m channels 

with accompanying daytime IFR FLS probabilities (right) over CONUS on January 

10, 2014 at 17:45 UTC. 

 

Figure 15 shows the same scene as Figure 14 above, zoomed in over the eastern CONUS. 

Surface observations in the false color image are color-coded to correspond to the 

following flight rule categories they report: VFR (green), MVFR (blue), IFR (yellow), 

LIFR (magenta). The MVFR/IFR/LIFR probabilities also contain surface observations 

with the same basic color code, however, for each probability product the magenta 

colored observation points represent those stations reporting the category of interest, or 
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below. For example, the magenta-colored surface observations on the IFR probability 

image represent surface stations reporting IFR or LIFR conditions. 

 

 

 

Figure 15 - GOES-13 false color image (top left) using the 0.65, 3.9 and 11 m 

channels with accompanying daytime MVFR FLS probabilities (top right), IFR FLS 

probabilities (bottom left) and LIFR FLS probabilities (bottom right) over CONUS 

on January 10, 2014 at 17:45 UTC. In the false color image, ‘crosses’ are colored-

coded to the following aviation flight rule categories representing surface 

observations: VFR (green), MVFR (blue), IFR (yellow), LIFR (magenta). For the 3 

probability images the surface observations colored magenta represent stations that 

report the category being detected, or lower. 

 

An example of the IFR FLS probability output from the enterprise FLS algorithm for a 

GOES-13 nighttime scene is shown in Figure 16.  
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Figure 16 - GOES-13 false color image (left) using the 13-11 m BTD, 3.9-11 m 

BTD and 11 m channels with the nighttime GOES-NOP IFR FLS probabilities 

(right) over CONUS on January 10, 2014 at 05:45 UTC. 
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Figure 17 - GOES-13 false color image (top left) using the 13-11 m BTD, 3.9-11 m 

BTD and 11 m channels with accompanying nighttime MVFR FLS probabilities 

(top right), IFR FLS probabilities (bottom left) and LIFR FLS probabilities (bottom 

right) over CONUS on January 10, 2014 at 05:45 UTC. In the false color image, 

‘crosses’ are colored-coded to the following aviation flight rule categories 

representing surface observations: VFR (green), MVFR (blue), IFR (yellow), LIFR 

(magenta). For the 3 probability images the surface observations colored magenta 

represent stations that report the category being detected, or lower. 

 

Figure 15 and Figure 17 show that although the enterprise probability products do not 

perfectly match the surface reports the higher probabilities for each category do 

correspond well to areas where surface reports indicate those conditions are present and 

the lower probabilities correspond well to areas where reports to not meet the given flight 

rule criteria. When ice or multilayered clouds are present the satellite metrics are not used 

in the Bayesian calculation so only the modeled RH parameter is used to calculate the 

probability. If the modeled RH data do not properly pick up on a low cloud layer the 

probabilities may result in unexpectedly low values since there is no satellite data that 

may otherwise help boost probabilities. This type of issue is seen mostly in the LIFR 

probabilities where only the lowest 500 ft AGL layer is queried for the maximum RH. 

This layer is very thin compared to the vertical resolution of the NWP profiles and 

therefore the accurate representation of the RH can sometimes be difficult, especially 

with varying terrain, to obtain. This issue can be seen along the east coast in the LIFR 

probabilities from Figure 15. Ice clouds are present over the Appalachian mountain chain 

from Georgia north to New York. The cloud type algorithm in Figure 7 verifies the 

presence of ice clouds. In this case the low level RH is not accurately accounted for 

leading to erroneously low LIFR probabilities. When ice and multilayered clouds are not 

present the satellite metrics can be used and usually result in more accurate probabilities. 

 

It should be noted that detecting FLS near the terminator (solar zenith angles between 

70°-90°, called the ‘terminator region’ herein) is difficult due to high solar zenith angles. 

For instance, the daytime cloud mask sometimes has trouble identifying low water clouds 

in the terminator region. Another reason is the daytime radiometric parameters are not 

accurately available when solar zenith angles are between 85°-90°, which prohibits the 
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determination of the probability that FLS is present. For these reasons, temporal 

information is used to make the transition through the terminator region more consistent. 

The enterprise FLS algorithm uses previous data up to one hour old to assist in the 

calculation of FLS probability in the terminator region. Large-scale areas of FLS 

generally do not change (dissipate or grow) drastically in the span of an hour, so using 

temporal data to assist is a logical solution until the full day/night enterprise FLS 

algorithm can once again produce probabilities with better accuracy. 

 

Temporal data is used differently depending on solar zenith angle of a given pixel inside 

the terminator region. For the enterprise FLS algorithm the terminator region is split into 

three zones defined by solar zenith angle. The first zone contains all pixels with solar 

zenith angles between 70°-80°. As previously mentioned, due to the high sun angle the 

detection of low water clouds by the cloud mask is occasionally problematic. The 

daytime portion of the FLS algorithm relies on the cloud mask for cloud detection at solar 

zenith angles less than 80° so if clouds are not detected the FLS probabilities will not be 

calculated for those pixels. To ensure a probability is calculated for all daytime cloudy 

pixels temporal cloud type (contains cloud mask information) and IFR probability data 

area used. For a given pixel, if the cloud type from the last valid time step was an ice 

cloud the current cloud type remains ice. If the previous IFR probability was greater than 

30% and the current cloud type is ‘clear’, the current cloud type is changed to a water 

cloud. If the previous IFR probability was less than 30% no change is made to the cloud 

type product. These checks are performed to maintain consistency of the FLS products 

through the terminator region. Once the cloud type adjustment is made the current 

refl(3.9m), stddev(0.65m), Tbias and low-level RH data are used to determine the 

probability that FLS is present for a given pixel. 

 

The second zone in the terminator region contains all pixels with solar zenith angles 

between 80°-85°. The cloud mask is no longer used for cloud clearing for solar zenith 

angles greater than 80°. In this region, temporal IFR probability information is used to 

determine pixels that current FLS probabilities are calculated for. The enterprise FLS 

algorithm only determines a current FLS probability for pixels where the previous IFR 

probability was greater than 30%. The calculations are performed on those pixels using 

current refl(3.9m), stddev(0.65m), Tbias and low-level RH data. For pixels that had 

previous IFR probabilities less than 30% the IFR probability is set to the previous 

temporal IFR probability to maintain consistency. 

 

The third zone in the terminator region is defined by solar zenith angles between 85°-90°. 

The enterprise FLS algorithm determines the FLS probability in this zone differently 

depending on whether the terminator is transitioning from night-to-day or vice versa. 

When the transition transistions from night-to-day the nighttime probability detection 

methodology is applied using current Tbias and low-level RH data and temporal 

ems(3.9m) data from the last valid time step. When the transition is from day-to-night 

the daytime probability detection methodology is applied using current Tbias and low-

level RH data and temporal refl(3.9m) and stddev(0.65m) data. The Tbias and low-level 

RH data are independent of solar zenith angle so current data from those parameters are 

always used. 
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An example of the FLS probability outputs from the enterprise FLS algorithm for a 

GOES-13 terminator scene over the eastern CONUS is shown in Figure 18. 

 

 

Figure 18 - GOES-13 false color image (top left) (13-11 m BTD, 3.9-11 m BTD 

and 11 m channels at night and the 0.65 m, 3.9 m and 11 m channels during 

the day) with accompanying MVFR FLS probabilities (top right), IFR FLS 

probabilities (bottom left) and LIFR FLS probabilities (bottom right) over CONUS 

on January 10, 2014 at 13:15 UTC. In the false color image, ‘crosses’ are colored-

coded to the following aviation flight rule categories representing surface 

observations: VFR (green), MVFR (blue), IFR (yellow), LIFR (magenta). For the 3 

probability images the surface observations colored magenta represent stations that 

report the category being detected, or lower. 

 

3.4.2.3 Determining FLS Depth 

 

The enterprise FLS algorithm uses separate approaches for estimating FLS geometrical 

thickness during the day and night. The daytime method uses the liquid water path 

(LWP) calculated from the daytime microphysical properties algorithm while the 
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nighttime method is based on the work of Ellrod (1995). Both are explained in the 

following sections. Once the FLS depth is calculated for both day and night it is run 

through a median filter to reduce noise. The median filter simply replaces the value at 

each pixel with the median value of a 3 x 3 pixel array centered on that pixel.  The 

generic median filter procedure is described in the AIADD Document. 

 

3.4.2.3.1 Daytime FLS Depth 

 

The daytime fog/low stratus thickness product utilizes the calculated LWP from the 

daytime cloud microphysical properties algorithm and an assumed value for the liquid 

water content (LWC).  Using the optical properties of aerosols and clouds and the FLS 

size distribution model from Tampieri and Tomasi (1976), Hess et al. (1998) determined 

that a typical LWC of FLS is 0.06 g/m3.  Hess et al. (1998) also found that the LWC of 

marine and continental stratus clouds was around 0.3 g/m3. The majority of the pixels that 

are flagged by the FLS detection algorithm are stratus clouds, so for simplicity, a LWC of 

0.3 g/m3
 is currently used for all daytime pixels.  The cloud geometrical thickness (m) if 

computed by dividing the LWP (g/m2) by the LWC (g/m3). Figure 19 shows an example 

daytime GOES-13 scene with the corresponding fog/low cloud thickness result. 
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Figure 19 - False color image (top) using the 0.65, 3.9 and 11 m channels for 

GOES-13 over CONUS on January 10, 2014 at 17:45 UTC along with the fog/low 

stratus thickness output (bottom) from the enterprise FLS algorithm. 
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The cloud thickness is not calculated for pixels identified as ice or multilayered cloud by 

the cloud type algorithm. FLS can be, and often is, present when ice or multilayered 

clouds are above, however, the satellite only returns information from the top of the 

highest cloud layer. For cases where ice or multilayered clouds are detected the satellite 

is not directly seeing underlying FLS clouds and therefore an accurate estimation of the 

thickness is not possible. Also, the daytime optical properties are only available for pixels 

with solar zenith angles less than 70 so the FLS thickness product is not available in the 

terminator region. This is the reason for the large strip of missing thicknesses in Figure 

19 that covers Canada and northern Atlantic Ocean. 

 

3.4.2.3.2 Nighttime FLS Depth 

 

Currently the nighttime retrieval of LWP is not adequate to determine the FLS depth. 

Previously, Ellrod (1995) determined that there is a correlation between nighttime 11-3.9 

m brightness temperature differences (BTD’s) and FLS thickness. Building upon this 

concept, the ems(3.9m) is used in lieu of the BTD because it takes into account viewing 

geometry and atmospheric water vapor absorption. Comparing FLS thickness measured 

using ground-based instruments from the San Francisco Bay area, a linear relationship 

was found between the ems(3.9m) and fog/low cloud thickness (Figure 20). The FLS 

thickness calculated using the ground-based instruments came from subtracting the cloud 

base measured from ceilometers from the FLS top height measured by a SOnic Detection 

And Ranging (SODAR) system (Clark et al., 1997).  

 

 

Figure 20 - Scatter plot of FLS thickness measured by ground-based SODAR and 

ceiling heights vs. collocated 3.9 m pseudo-emissivity from GOES-11. 
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By performing a linear regression to the data in Figure 20 a linear equation was found 

that fits the trend of the data with a correlation coefficient of ~0.72. This equation (see 

Eq. 9 in section 3.5) is used to calculate the FLS thickness for all nighttime pixels not 

flagged as ice cloud or multi-layered cloud by the cloud type algorithm. As explained in 

the daytime FLS depth description, accurate estimation of the FLS depth is not available 

when ice or multilayered clouds are above the lower cloud layer. Figure 21 shows an 

example nighttime scene with the FLS thickness regression equation applied to the 3.9 

m pseudo-emissivity channel from GOES-13. 
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Figure 21 - False color image (top) using the 13-11 m BTD, 3.9-11 m BTD and 11 

m channels for GOES-13 over CONUS on January 10, 2014 at 05:45 UTC along 

with the fog/low stratus thickness output (bottom) from the enterprise FLS 

algorithm. 
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3.5 Mathematical Description 

 

The enterprise FLS algorithm data and methodology were described in the previous 

section.  The current logic to derive the final FLS probabilities and cloud thickness is 

shown in Figure 22.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 - Schematic illustration of the logic employed to derive the enterprise 

fog/low stratus probabilities and thickness. 

 

The methods used to estimate the FLS thickness were described in section 3.4.2.3. For 

the daytime calculation of fog/low stratus thickness when the solar zenith angle is less 

than 70, the following equation was used: 

 

Z = LWP/LWC      Eq. 8 

 

Clear sky indicated 

by cloud mask? 

No Fog/Low Stratus: 

Set probabilities to 

2.0% (fill value) 

Water, mixed phase 

or super cooled cloud 

yes 

no 

yes 
no 

Ice/Multilayered cloud: 

Calculate probabilities 

using only RH LUT’s 

Liquid water cloud: 

Calculate probabilities 

using both satellite metric 

and RH LUT’s 

Combine into final 

FLS probabilities 

Is pixel day?  

(solar zenith angle < 90) 

yes 

no 

If not ice or multilayered cloud 

and solar zenith angle is < 70 or 
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where Z is the thickness, LWP is the liquid water path and LWC is the liquid water 

content. Currently, calculating fog/low status thickness in the terminator region (70 < 

solar zenith angle < 90) is not possible. 

 

The nighttime calculation of fog/low stratus thickness is performed using the following 

linear regression-based relationship between the 3.9 m pseudo-emissivity and FLS 

depth determined by ground-based instruments: 

 

Z = A[ems(3.9 m)] + B      Eq. 9 

 

where Z is the thickness, ems(3.9 m) is the 3.9 m pseudo-emissivity and A and B are 

regression constants calculated to be -1159.93 and 1295.70 respectively (see Figure 20). 

This method is analogous to the commonly known relationship used by Ellrod (1995) 

with the substitution of the 3.9 m pseudo-emissivity for the 3.9 – 11 m brightness 

temperature difference. 

 

3.5.1 Algorithm Output 

 

The final output of the FLS algorithm and description of their meaning is given in Table 

8. 

 

Table 8 - Table describing the output from the enterprise FLS algorithm. 

Fog/Low Stratus 

Output 
Description 

Probability of MVFR Probability that MVFR conditions are present in % 

Probability of IFR Probability that IFR conditions are present in % 

Probability of LIFR Probability that LIFR conditions are present in % 

FLS Thickness Thickness of fog/low cloud layer in meters 

Quality Flags See Table 9 

Product Quality See Table 10 

Metadata See Table 11 

 

3.5.1.1 Quality Flags (QF) 

 

A complete and self-contained description of the enterprise fog/low cloud quality flag 

output is listed in Table 9. 

 

Table 9 – A complete description of the fog/low cloud quality flag output is shown. 

Bit(s) QF Description Bit Interpretation 

1 Fog/low cloud probability quality flag – the 0 = 75% - 100% (high) 
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product quality will be dependent on the FLS 

probability assigned to each pixel. Four levels 

of quality, with 0 being the highest and 3 

being the lowest will be designated. 

1 = 50% - 75% 

2 = 25% - 50% 

3 = 0% - 25% (low) 

2 Multi-layered cloud quality flag – this will 

be set to “low quality” if multi-layered clouds 

are detected by the GOES-NOP cloud phase 

algorithm as FLS may be present but may not 

be detected 

0 = multi-layered clouds not 

detected 

1 = multi-layered clouds are 

detected 

3 Cloud phase quality flag – this will bet set to 

“low quality” if ice clouds are detected by the 

GOES-NOP cloud phase algorithm because 

the fog/low cloud algorithm will not be run 

0 = ice clouds not detected 

1 = ice clouds are detected 

4 Freezing FLS flag – this flag will represent 

whether each pixel containing fog/low cloud 

has a temperature below freezing (0 K) 

indicating the possibility of freezing fog 

0 = temperature of fog/low 

cloud pixel is at or below 0 K 

1 = temperature of fog/low 

cloud pixel is above 0 K 

5 FLS Depth quality flag – this flag will 

indicate which pixels have solar zenith angles 

between 70 – 90, where FLS depth is not 

possible due to the lack of lwp or ems(3.9 m) 

information 

0 = pixel has solar zenith 

angle either < 70 or > 90 

(FLS depth available) 

1 = pixel has solar zenith 

angle between 70 - 90 (FLS 

depth NOT available)  

 

3.5.1.2 Product Quality Information (PQI) 

 

A complete and self-contained description of the enterprise fog/low cloud Product 

Quality Information (PQI) output is listed in Table 10. 

 

Table 10 – A complete description of the fog/low cloud Product Quality Information 

(PQI) output is shown. 

Bit(s) PQI Description Bit Interpretation 

1 Pixel is geolocated and has valid spectral 

data 

0 = FALSE 

1 = TRUE 

2 Pixel is considered a daylight pixel (solar 

zenith angle > 90) 

0 = FALSE 

1 = TRUE 

3 Pixel is located over land 0 = FALSE 

1 = TRUE 

 

3.5.1.3 Product Metadata 
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A complete and self-contained description of the enterprise fog/low cloud metadata 

output is listed in Table 11. 

 

Table 11 – A complete description of the fog/low cloud metadata output is shown. 

Metadata Description 

Number of FLS eligible pixels (i.e., number of pixels given a valid FLS probability) 

Fraction of pixels in scene detected as fog/low cloud 

Mean FLS depth from pixels detected as containing fog/low cloud 

Standard deviation of FLS depth from pixels detected as containing fog/low cloud 
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4 TEST DATA SETS AND OUTPUTS 

4.1 Simulated/Proxy Input Data Sets 

 

The data used to test the enterprise fog/low stratus cloud algorithm consists of GOES-12, 

GOES-13 and GOES-16 observations. The fog/low cloud algorithm is validated using 

surface observations for detection and surface observations and SODAR data for 

thickness. All of these data sets are described below. 

 

4.1.1 GOES-NOP Data 

 

The GOES-NOP imager provides five spectral channels with a spatial resolution of 4 km 

and provides spatial coverage of the full disk with a temporal resolution of 3 hours. 

Smaller CONUS and Northern Hemisphere domains are available every 15 minutes. 

GOES-12/13 provides a good source of data for testing and developing the fog/low cloud 

algorithm due to the abundance of data that can be used to train the algorithm. Figure 23 

is a full-disk GOES-13 image from 17:45 UTC on January 10, 2014. GOES-12/13 data 

are readily available from the University of Wisconsin Space Science and Engineering 

Center (SSEC) Data Center.  

 

 

Figure 23 – GOES-13 false color image using the 0.65, 3.9 and 11 m channels from 

17:45 UTC on January 10, 2014. 
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4.1.2 GOES-16 Data 

 

The ABI on GOES-16 provides 16 spectral channels with a spatial resolution of 2 km and 

provides spatial coverage of the full disk with a temporal resolution of 15 min. A smaller 

CONUS domain is also available every 5 minutes. GOES-16 data also provides a good 

source of data for testing and developing the fog/low cloud algorithm due to the 

abundance of data that can be used to train the algorithm. Figure 24 shows a full-disk 

GOES-16 image from 17:45 UTC on July 24, 2018. GOES-16 data are available from the 

National Centers for Environmental Information (NCEI).  

 

 

Figure 24 - GOES-16 false color image using the 0.65, 1.6 and 11 m channels from 

17:45 UTC on July 24, 2018. 

 

4.1.3 Surface Observations 

 

Surface observations are received from both manned and automated ground stations all 

over the world. They provide accurate ground-based measurements of weather 

parameters such as temperature, pressure, weather conditions, etc., with relatively high 

temporal coverage (usually every hour, but varies by station). A useful surface 

observation parameter for validating fog/low cloud is the observed cloud ceiling. The 

most densely concentrated number of surface observations comes from the United States 
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and Europe. Due to their positioning, GOES-12/13/16 do not provide information over 

Europe. For validation purposes surface observations over CONUS provide the greatest 

amount of data.  

 

The surface observations over CONUS come from Automated Surface Observing System 

(ASOS) sites across the country. The ASOS program was created and is maintained by a 

joint effort between the National Weather Service (NWS), the Federal Aviation 

Administration (FAA) and Department of Defense (DOD). The cloud ceiling 

observations used to create the FLS probability LUT’s  (see sections 3.4.2.2.2.1 and 

3.4.2.2.3.1) and to validate the enterprise fog/low cloud product are measured using a 

laser ceilometer. The valid range of the laser ceilometer at the ASOS stations is 100-

12,000 ft with an accuracy of 100 ft or 5% (whichever is greater). The product range 

and accuracy information was obtained from the ASOS User’s Guide and ASOS User’s 

Guide Appendices, which can be found at the NWS ASOS website 

(www.nws.noaa.gov/asos). 

 

4.1.4 SODAR Data 

 

The acoustic SODAR is an upwardly pointing parabolic antenna that emits an audible 

pulse whose return signal is proportional to the vertical gradient of air density. This gives 

it the capability of detecting the base of the atmospheric inversion, which defines the top 

of the stratus deck. Combining this data with the measured cloud ceiling from a 

ceilometer allows for the calculation of the geometric boundaries of low clouds. 

 

 

Figure 25 – An example of SODAR data combined with cloud ceiling. The red 

dashed line represents the base of the atmospheric inversion (i.e., stratus top) and 

the green dashed line represents the measured cloud ceiling. The difference between 

the two lines is the stratus deck thickness.  

 

Unfortunately, SODAR data is only available at a small number of locations and not at 

every surface observation site. For the enterprise fog/low cloud validation the SODAR 

data came from two sites around the San Francisco Bay Area courtesy of the NWS San 

Francisco Bay Area Forecast Office (Clark et al., 1997). 
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4.2 Output from Simulated/Proxy Inputs Data Sets 

 

The enterprise fog/low cloud algorithm was tested using GOES-13 and GOES-16 satellite 

data. As an example, results from January 10, 2014 at 5:45 and 17:45 UTC are shown in 

Figure 26 and Figure 27. A more detailed zoomed-in region over CONUS is also shown 

in Figure 28 and Figure 29. Manual analysis of the results compared to false color images 

show that areas of fog/low cloud are detected well and are verified by surface 

observations shown in Figure 15 and Figure 17. Example FLS products using GOES-16 

data are shown over CONUS from July 21, 2017 at 5:45 and 17:45 UTC in Figure 30 and 

Figure 31. A more quantitative validation is shown in the next section. 
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Figure 26 - Example nighttime results (using GOES-13) from the enterprise FLS 

algorithm for January 10, 2014 at 5:45 UTC. The top left panel is MVFR 

probabilities, the top right panel is the IFR probabilities, the bottom left panel is the 

LIFR probabilities and the bottom right panel is the cloud thickness results. 
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Figure 27 – Example daytime results (using GOES-13) from the enterprise FLS 

algorithm for January 10, 2014 at 17:45 UTC. The top left panel is MVFR 

probabilities, the top right panel is the IFR probabilities, the bottom left panel is the 

LIFR probabilities and the bottom right panel is the cloud thickness results. 
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Figure 28 - A zoomed-in look at the nighttime fog/low cloud detection and thickness 

results shown in Figure 26 over the eastern CONUS and Atlantic Ocean. The top 

left panel is MVFR probabilities, the top right panel is the IFR probabilities, the 

bottom left panel is the LIFR probabilities and the bottom right panel is the cloud 

thickness results. 

 

 

 

Figure 29 – A zoomed-in look at the daytime fog/low cloud detection and thickness 

results shown in Figure 27 over CONUS. The top left panel is MVFR probabilities, 

the top right panel is the IFR probabilities, the bottom left panel is the LIFR 

probabilities and the bottom right panel is the cloud thickness results. 
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Figure 30 - Example nighttime results (using GOES-16) from the enterprise FLS 

algorithm for July 21, 2017 at 5:45 UTC. The top left panel is MVFR probabilities, 

the top right panel is the IFR probabilities, the bottom left panel is the LIFR 

probabilities and the bottom right panel is the cloud thickness results. 
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Figure 31 - Example daytime results (using GOES-16) from the enterprise FLS 

algorithm for July 21, 2017 at 17:45 UTC. The top left panel is MVFR probabilities, 

the top right panel is the IFR probabilities, the bottom left panel is the LIFR 

probabilities and the bottom right panel is the cloud thickness results. 

 

4.2.1 Precisions and Accuracy Estimates 

 

To estimate the precision and accuracy of the enterprise fog/low cloud detection 

algorithm, measurements of cloud ceiling from surface observations were used. As 

previously mentioned, the enterprise fog/low cloud detection product is designed to 

quantitatively identify clouds that produce at least MVFR, IFR and LIFR conditions. 

Surface observations of cloud ceiling depict areas that meet those conditions and can be 

collocated with the satellite pixels in order to validate the fog/low cloud product. Future 

validation efforts will focus on using surface observations. 

 

To estimate the precision and accuracy of the enterprise fog/low cloud thickness 

algorithm, comparisons to measured FLS thicknesses using ground-based SODAR and 

ceilometer data were performed. The acoustic SODAR system allows the bottom of the 

atmospheric inversion to be detected, which corresponds to the top of the stratus layer 

overhead. The ceilometer data is used to find the base of the stratus layer. The thickness 

of the cloud layer is the height difference between the inversion level and the cloud 

ceiling and is used to validate the fog/low cloud thickness algorithm. 

4.2.2 Error Budget 

 

The enterprise FLS detection algorithm was applied to 12 days (1 day from each month) 

of GOES-13 and GOES-16, and validated using surface observations of cloud ceiling and 

surface visibility as discussed in the previous section. The enterprise FLS thickness 

algorithm was also applied to GOES-11 and validated using a combination of ground-

based SODAR data and cloud ceiling. SODAR data was not available to validate the 

GOES-16 thickness product, however, comparisons were made with the GOES-13 

thicknesses to infer errors. 
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4.2.2.1 Fog/Low Cloud Detection Error Budget 

 

The enterprise FLS algorithm was validated using a calculation of the accuracy. The 

F&PS requirement for the enterprise FLS algorithm is to achieve an accuracy of 70% or 

greater. There are four possible outcomes from the FLS detection algorithm (hit, miss, 

false alarm or non-event) that are used to assess the accuracy that are shown in Table 12.  

 

Table 12 – Possible outcomes from the enterprise FLS algorithm. 

fog/low stratus  

cloud detected 

fog/low stratus cloud observed 

YES NO 

YES h (hit) f (false alarm) 

NO m (miss) z (non-event) 

 

The accuracy of the FLS detection algorithm is calculated by dividing the total number of 

correctly identified FLS (hits) and non-FLS (non-event) pixels by the total number pixels 

used for the validation. This can be written as the following equation: 

 

Accuracy =
h+ z

h+m+ f + z
      Eq. 10 

 

The accuracy ranges from 0.0-1.0, with 1.0 meaning that all pixels were correctly 

classified as FLS/non-FLS and 0.0 meaning that no pixels were correctly classified as 

FLS/non FLS. 

 

Surface observations were used to validate the accuracy of the enterprise FLS algorithm. 

Analyses of the accuracy of the enterprise FLS detection algorithm applied to GOES-13 

and GOES-16 as a function of FLS probability using surface observations are shown in 

Figure 32 and Figure 33. 
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Figure 32 – FLS accuracy shown as a function of MVFR probability (top left), IFR 

probability (top right) and LIFR probability (bottom), calculated using GOES-13 

data over CONUS. Surface observations of cloud ceiling and surface visibility were 

used to determine MVFR/IFR/LIFR conditions. 

 

 

 

Figure 33 - FLS accuracy shown as a function of MVFR probability (top left), IFR 

probability (top right) and LIFR probability (bottom), calculated using GOES-16 

data over CONUS. Surface observations of cloud ceiling and surface visibility were 

used to determine MVFR/IFR/LIFR conditions. 

 

The maximum accuracy obtained for the combined day/night pixels exceeded 80% for all 

flight rule categories for both GOES-13 and GOES-16. In general, the maximum 
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accuracy was found to be slightly higher for daytime pixels than for nighttime pixels, 

however, the accuracy for nighttime pixels still exceeds the enterprise FLS accuracy 

requirement. These results show that the enterprise FLS algorithm meets the F&PS 

detection accuracy requirement of 0.70 when using surface observations to validate the 

algorithm. 

 

While the enterprise FLS algorithm was validated using a calculation of the overall 

accuracy, the critical success index (CSI), also known as the threat score, was also used 

to help evaluate the performance of the enterprise FLS algorithm. This method can also 

be described as the algorithm accuracy when correct non-detected events are removed. 

Values for the CSI range from 0 to 1, where 0 represents no skill and 1 represents perfect 

detection. This method is frequently used because it takes into account both false alarms 

and missed events, making it a more balanced score. However, the CSI can be sensitive 

to the climatology of the event and tends to produce lower scores for rare events. The 

four possible outcomes from the enterprise FLS algorithm shown in Table 12 are again 

used to calculate the CSI.  

 

The CSI is defined as the number of FLS pixels properly detected divided by the total 

number of pixels falsely detected as FLS and observed as FLS by surface observations, or 

from Table 12 above: 

 

CSI =
h

h+m+ f       Eq. 11
 

 

The CSI allows further evaluation of the performance of the algorithm and can be used to 

show improvements to the performance of the enterprise FLS algorithm. One example of 

how the CSI was used to show improvement to the algorithm was an analysis of the 

nighttime CSI for the heritage BTD method, as a function of BTD threshold, and the 

enterprise Bayesian method using the 3.9 m pseudo-emissivity, radiometric surface 

temperature bias and the modeled RH information, as a function of MVFR/IFR/LIFR 

FLS probability threshold. Only nighttime data was analyzed since the heritage BTD 

method is generally not used during the day. The results of this analysis are shown in 

Figure 34. 
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Figure 34 – Nighttime CSI analysis for the heritage BTD FLS method (black) and 

the enterprise FLS Bayesian algorithm (Blue) using pixels containing all types of 

clouds (solid lines) and pixels not containing ice or multilayered clouds (dashed 

lines). GOES-13 data were used for this analysis. 

  

Figure 34 illustrates that the enterprise FLS algorithm produces higher maximum skill 

scores than the heritage BTD method for each flight rule category. When ice and 

multilayered clouds are included in the analysis the maximum CSI from the enterprise 

FLS probabilities is nearly double that of the heritage BTD methodology. Even when 

excluding ice and multilayered clouds (where the 3.9-11 micron BTD is known to do 

poorly) the enterprise Bayesian FLS probabilities are still more skillful. This analysis 

confirms the Bayesian method using the 3.9 m pseudo-emissivity, radiometric surface 

temperature bias and modeled RH information out-performs than the heritage BTD 

methodology and justifies why it was chosen for the enterprise FLS algorithm. 

 

The CSI scores were calculated for the final enterprise FLS algorithm validation datasets 

using surface observations of cloud ceiling and surface visibility to identify pixels that 

meet MVFR/IFR/LIFR criteria. The results using GOES-13 and GOES-16 data are 

shown in Figure 35 and Figure 36. 
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Figure 35 – Critical success index (CSI) analysis for the enterprise FLS algorithm 

applied to GOES-13 as a function of MVFR probability (top left), IFR probability 

(top right) and LIFR probability (bottom) using surface observations of cloud 

ceiling and surface visibility to identify pixels that meet MVFR/IFR/LIFR criteria.  
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Figure 36 - Critical success index (CSI) analysis for the enterprise FLS algorithm 

applied to GOES-16 as a function of MVFR probability (top left), IFR probability 

(top right) and LIFR probability (bottom) using surface observations of cloud 

ceiling and surface visibility to identify pixels that meet MVFR/IFR/LIFR criteria. 

 

The CSI analysis performed in Figure 35 and Figure 36 is used to determine the 

probability threshold for each flight rule category that yields the highest skill. If a yes/no 

determination of FLS were required, these probabilities would represent the thresholds 

that maximize algorithm performance. For GOES-13 the maximum skill for MVFR, IFR 

and LIFR was found using probabilities of 36%, 20% and 14% respectively. For GOES-

16 the maximum skill for MVFR, IFR and LIFR was found using probabilities of 38%, 

26% and 21% respectively. Although these thresholds do not reflect the FLS probabilities 

that yield the maximum accuracy (Figure 32 and Figure 33), the accuracies associated 

with them are still all above the requirement of 0.70 and are shown in Table 13. 

 

Table 13 – The enterprise FLS probability accuracy score using GOES-13 and 

GOES-16 data calculated at the probability threshold (in parentheses) that 

produced the highest CSI scores. 

Flight Rule Category GOES-13 Accuracy  

(prob threshold from 

max CSI) 

GOES-16 Accuracy  

(prob threshold from 

max CSI) 

MVFR 0.84 (36%) 0.87 (38%) 

IFR 0.86 (20%) 0.90 (26%) 

LIFR 0.91 (14%) 0.92 (21%) 

 

The results in Table 13 indicate the accuracy of the enterprise FLS probability products 

still surpass the F&PS requirement of 0.70 when the probability threshold that produced 

the highest CSI values was used. It also should be noted that the accuracies produced 

using GOES-16 data are all higher than those calculated using GOES-13 meaning the 

GOES-16 FLS products are slightly more accurate. 

 

Although the previous accuracy and CSI analyses show the enterprise FLS products meet 

the specified performance requirements we also produced attribute diagrams for each 

probability product. The attributes diagram, also called a reliability diagram, is a useful 
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verification tool that shows how accurate a probabilistic forecast correlates to the actual 

probability of an observed event. The dashed line running at a 45 angle from the lower 

left corner to the upper right corner represents perfect reliability. The shaded region is 

determined by the climatology of the event. Points that lie within the shaded region 

indicate increased model skill and points that lie outside the shaded region indicate 

decreased model skill with respect to climatological probability (Wilks 2006). Diagrams 

were produced for all three flight rule categories using GOES-13 and are shown in Figure 

37 (daytime pixels) and Figure 38 (nighttime pixels).  

 

 

Figure 37 - The attributes diagrams for the GOES-13 MVFR (left), IFR (middle) 

and LIFR (right) FLS probability products for all daytime pixels. Points that lie 

within the shaded region indicate increased model skill. 

 

 

Figure 38 - The attributes diagrams for the GOES-13 MVFR (left), IFR (middle) 

and LIFR (right) FLS probability products for all nighttime pixels. Points that lie 

within the shaded region indicate increased model skill. 

 

The attributes diagrams show that overall the enterprise FLS probability products are 

reliable detection models as the majority of the points lay within the shaded area 

relatively close to the perfect reliability line. The same diagrams were produced using 

GOES-16 data and are shown in Figure 39 (daytime) and Figure 40 (nighttime). 
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Figure 39 - The attributes diagrams for the GOES-16 MVFR (left), IFR (middle) 

and LIFR (right) FLS probability products for all daytime pixels. Points that lie 

within the shaded region indicate increased model skill. 

 

 

Figure 40 - The attributes diagrams for the GOES-16 MVFR (left), IFR (middle) 

and LIFR (right) FLS probability products for all nighttime pixels. Points that lie 

within the shaded region indicate increased model skill. 

 

The attributes diagrams again show that overall the enterprise FLS probability products 

are reliable. Overall the GOES-16 data also appears to be slightly closer to the perfect 

reliability line than the GOES-13 and therefore can be considered better calibrated. 

 

4.2.2.2 GOES-NOP Fog/Low Cloud Thickness Error Budget 

 

Data from two stations in the San Francisco Bay Area were used to validate the enterprise 

fog/low cloud algorithm applied to GOES-11. FLS thicknesses were calculated manually 

from several single-layer low cloud events like the one shown in Figure 25. Due to the 

lack of SODAR stations and the difficulty in manually finding single-layered FLS events 

over such a small area, a large validation data set was not available. With the limited 

number of validation points that were obtained, an estimation of the accuracy of the 

fog/low cloud thickness algorithm was calculated. The F&PS requires the fog/low cloud 

thickness be detected within 500 m. Results gathered using SODAR data from several 

scenes are shown in Figure 41. 
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Figure 41 – Scatter plot comparing measured FLS thicknesses using SODAR and 

ceiling data with thicknesses output from the enterprise fog/low cloud thickness 

algorithm applied to GOES-11 for both day (left panel) and night (right panel).  

 

The SODAR data analysis above indicates that the accuracy of the enterprise FLS 

thickness product applied to GOES-11 is well within F&PS requirements with a daytime 

bias of about 31 m and a nighttime bias of around 25 m. Additionally, the strong 

correlations indicate that the spatial and temporal patterns are also useful.  

 

4.2.2.3 ABI Fog/Low Cloud Thickness Error Budget 

 

Unfortunately, SODAR data was not available for validating the FLS thickness product 

for GOES-16. However, comparisons can be made to the GOES-NOP thicknesses and be 

used to infer if the GOES-16 thickness product meets the 500 m bias requirement. Images 

of the enterprise FLS thickness product applied to both GOES-13 and GOES-16 are 

shown in Figure 42 (nighttime) and Figure 43 (daytime).  
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Figure 42 – The enterprise FLS thickness product produced using GOES-13 (top) 

and GOES-16 (bottom) over CONUS. This is a nighttime scene from July 21, 2017 

at 5:45 UTC. 
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Figure 43 - The enterprise FLS thickness product produced using GOES-13 (top) 

and GOES-16 (bottom) over CONUS. This is a daytime scene from July 21, 2017 at 

17:45 UTC. 

 

The enterprise FLS thickness product applied to GOES-13 can be co-located spatially 

with thicknesses produced using GOES-16. For this comparison, only co-located pixels 

containing both GOES-13 and GOES-16 FLS thicknesses greater than 0 m were used. 

The valid co-located pixels from Figure 42 and Figure 43 are shown as scatterplots in 

Figure 44. 
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Figure 44 – Scatterplots of valid co-located GOES-13 and GOES-16 FLS thicknesses 

from July 21, 2017 over CONUS. The left plot contains nighttime pixels from 5:45 

UTC (Figure 42). The right plot contains daytime pixels from 17:45 UTC (Figure 

43). 

  

The scatterplots from Figure 44 show that the nighttime GOES-13/16 FLS thickness 

products are well correlated with a correlation coefficient of 0.87. The daytime FLS 

thicknesses appear slightly less correlated with a correlation coefficient of 0.80. While 

both GOES-13 and GOES-16 were in a position to view CONUS for this comparison, the 

difference in spatial resolution and viewing geometry (GOES-13 was positioned at -75W 

longitude while GOES-16 was positioned at -89.5W longitude) between the 2 imagers 

will likely account for a large portion of the differences observed between the two FLS 

thickness products. Another significant source of differences between the daytime pixels 

is the use of an updated daytime optical properties algorithm for GOES-16. As mentioned 

above, the enterprise FLS thickness algorithm is based off a calculated daytime optical 

properties LWP product for daytime pixels. The updated algorithm for GOES-16 has 

been further developed from the previous GOES-NOP version so larger differences 

between the GOES-13 and GOES-16 FLS thicknesses are expected. 

 

For further comparison, differences were calculated between the co-located GOES-13 

and GOES-16 FLS thicknesses and used to create the histograms shown in Figure 45.  
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Figure 45 – Histograms of the differences between co-located GOES-13 and GOES-

16 FLS thicknesses from July 21, 2017 over CONUS. The left plot contains 

nighttime pixels from 5:45 UTC (Figure 42). The right plot contains daytime pixels 

from 17:45 UTC (Figure 43). 

 

The histograms in Figure 45 show the distribution of the differences observed between 

the co-located GOES-13 and GOES-16 FLS thickness products. The distribution for night 

pixels produced a bias of 4.68 m with a standard deviation of 42.55 m. The distribution 

for daytime pixels showed a bias of -133.95 m with a standard deviation of 99.41 m. The 

differences were calculated by subtracting the co-located GOES-16 FLS thicknesses from 

the GOES-13 FLS thicknesses so positive bias values correspond to the GOES-16 FLS 

thicknesses being low-biased compared to the GOES-13 thicknesses and negative values 

correspond to the GOES-16 thicknesses being biased higher. Considering the validation 

of the GOES-NOP FLS thickness product using SODAR data produced biases of 25 m 

(night) and 31 m (day) and the biases seen between the GOES-13 and GOES-16 FLS 

thickness products, the GOES-16 FLS thickness product still comfortably meets the 

F&PS bias requirement of 500 m. 

 

4.2.3 Validation Summary 

 

The following points summarize the results of the enterprise FLS detection and depth 

algorithm validation analysis. 

 

 According to the F&PS, the FLS detection must have an accuracy of 0.70 or 

greater and the FLS thickness must have an accuracy (bias) of 500 m or less. 

 

 Surface observations of cloud ceiling and surface visibility were used to validate 

the FLS detection algorithm. Surface observations of cloud ceiling combined with 

SODAR data were used to validate the FLS depth product. 

 

 Using surface observations as the validation source yielded GOES-13 FLS 

detection accuracies for MVFR/IFR/LIFR of 0.84/0.86/0.91 for the probability 

threshold that yielded the highest CSI scores (36%/20%/14%) respectively. 
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 Using surface observations as the validation source yielded GOES-16 FLS 

detection accuracies for MVFR/IFR/LIFR of 0.87/0.90/0.92 for the probability 

threshold that yielded the highest CSI scores (38%/26%/21%) respectively. 

 

 Using the SODAR data as the validation source yielded GOES-NOP FLS 

thickness biases of 31 m (day) and 25 m (night). 

 

 Comparisons between co-located GOES-13 and GOES-16 pixels yielded GOES-

16 FLS thickness biases of 134 m (day) and -5 m (night).  

 

 Thus, the enterprise FLS detection and thickness products meet the F&PS 

accuracy specifications. 

 

5 PRACTICAL CONSIDERATIONS 

5.1 Numerical Computation Considerations 

 

The FLS algorithm is implemented sequentially.  Because it relies on the results of other 

cloud algorithms, the cloud mask, cloud phase and daytime optical properties must be run 

before the FLS algorithm. In addition, the necessary RTM and NWP calculations also 

need to be processed and fed into the FLS algorithm. The FLS algorithm currently uses 

12-hr forecasts from the GFS and 2-and 3-hr forecasts from the RAP. However, if these 

are not available, up to 24-hr forecasts can be utilized. All tests are applied before the 

final fog/low stratus mask and thickness are determined. 

5.2 Programming and Procedural Considerations 

 

The FLS algorithm is, for the most part, a pixel-by-pixel algorithm.  However, a spatial 

uniformity filter is currently used to reduce noise by taking into account the surrounding 

pixels. 

 

5.3 Quality Assessment and Diagnostics 

 

The following procedures are recommended for diagnosing the performance of the FLS 

algorithm. 

 Periodically image the FLS probabilities and compare them to true color images 

and surface observations of cloud ceiling and surface visibility to ensure proper 

areas are being correctly detected with minimal false detection (exceptionally 

large probabilities). 

 Continue to validate the FLS algorithm using surface observations. 
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5.4 Exception Handling 

 

The FLS algorithm currently checks the validity of all channels before running. If any 

channels are unavailable, the algorithm will still run disregarding tests reliant on those 

channels. The FLS algorithm also expects the main processing framework to flag any 

pixels with missing geolocation or viewing geometry information. 

 

5.5 Algorithm Validation 

 

Surface observations are used to validate the fog/low cloud detection algorithm. These 

will continue to serve as the main source of validation data in the future. For FLS 

thickness, ground-based measurements of cloud thickness using ceiling height and 

SODAR data are used as the main source of validation. 

 

6 ASSUMPTIONS AND LIMITATIONS 
 

The following sections describe the current limitations and assumptions in the current 

version of the enterprise fog/low cloud algorithm. 

 

6.1 Performance 

 

The following assumptions have been made in developing and estimating the 

performance of the fog/low cloud algorithm.  The following list contains the current 

assumptions (numbered) and proposed mitigation strategies (lettered). 

 

1. NWP data of comparable or superior quality to the current 12 hour GFS and 

2- and 3- hour RAP forecasts are available. 

a. Use longer-range GFS and RAP forecasts or switch to another NWP 

source 

 

2. All of the static ancillary data are available at the pixel level.  

a. Reduce the spatial resolution of the available ancillary data 

 

3. The processing system allows for processing of multiple scan lines at once for 

application of important spatial analysis techniques.  

a. No mitigation is possible 

 

4. A more robust assumption of the LWC is necessary for daytime FLS thickness 

calculation. 

a. Create a variable assumption for LWC depending on whether the 

algorithm detects FLS or low stratus. 
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In addition, the clear sky radiance calculations are prone to large errors, especially near 

coastlines, in mountainous regions, snow/ice field edges, and atmospheric frontal zones, 

where the NWP surface temperature and atmospheric profiles are less accurate. 

Improvements in NWP fields should lead to additional improvements in the enterprise 

fog/low cloud products. 

 

6.2 Assumed Sensor Performance 

 

We assume the sensor will meet its current specifications.   However, the FLS algorithm 

will be dependent on the following instrumental characteristics. 

  

 The FLS algorithm is dependent on several other cloud algorithms (see section 

3.2); therefore any issues that degrade those algorithms may also affect the 

fog/low cloud algorithm. An example is how the amount of striping in the data 

may affect spatial uniformity tests in the other cloud algorithms leading to issues 

absorbed by the FLS algorithm.   

 Unknown spectral shifts in some channels will cause biases in the clear-sky RTM 

calculations that may impact the ability to accurately calculate the surface 

temperature bias relied upon in the enterprise FLS algorithm 

 

6.3 Pre-Planned Product Improvements 

 

While development of the enterprise fog/low cloud algorithm continues, we expect in the 

coming years to focus on the following issues. 

 

6.3.1 Additional Capability to Run On SEVIRI 

 

Due to wider 3.9 m channel window on SEVIRI, the current nighttime LUT’s used for 

GOES-NOP and the ABI are not applicable. In order to accurately use the enterprise FLS 

algorithm on SEVIRI new LUT’s need to be created.  

 

7 REFERENCES 
 

Bendix, J., 2002. A satellite-based climatology of FLS and low stratus in Germany and 

adjacent areas. Atmos. Res., 64, 3-18. 

 

Cermak, J. and J Bendix, 2008. A Novel Approach to Fog/Low Stratus Detection Using 

Meteosat 8 Data. Atmos. Res., 87, 279-292. 

 



 

 88 

Clark, D. A. and F. W. Wilson, 1997. “The San Francisco Marine Stratus Initiative”, 7th 

Conference on Aviation, Range, and Aerospace Meteorology. Long Beach, CA, pp. 

384-389. 

 

Domingos, P and M. Pazzani, 1997. On the Optimality of the Simple Bayesian Classifier 

Under Zero-One Loss. Machine Learning, 29, 103–130. 

 

Ellrod, G. P., 1995: Advances in the Detection and Analysis of FLS at Night Using 

GOES Multispectral Infrared Imagery. Weather and Forecasting, 10, 606-619. 

 

Ellrod, G. P., 2003: Estimation of Low Cloud Base Heights at Night Using GOES 

Infrared and Surface Temperature Data. National Weather Digest, 26 (1-2), 39-44. 

 

Eyre, J. R., J. L. Brownscombe, and R. J. Allam, 1984. Detection of FLS At Night Using 

Advanced Resolution Radiometer (AVHRR) imagery. Meteor. Mag., 113, 266 271. 

 

Heidinger, A. K. and M. J. Pavolonis, 2009: Gazing at Cirrus Clouds for 25 Years 

Through A Split Window. Part I: Methodology. J. of Appl. Met. and Clim., 48, 1100-

1116. 

 

Hess, M., P. Koepke and I. Schult, 1998: Optical Properties of Aerosols and Clouds. Bull. 

Amer. Meteor. Soc., 79, 831-44. 

 

Kossin, J.P. and M. Sitkowski, 2008: An Objective Model for Identifying Secondary 

Eyewall Formation in Hurricanes. Mon. Wea. Rev., 137, 876-892. 

 

Lee, T. F., F. J. Turk and K. Richardson, 1997. Stratus and FLS Products Using GOES-8-

9 3.9 m Data. Weather Forecast, 12, 664-677. 

 

Pavolonis, M. J. and Heidinger, A. K., 2004: Advances in identifying cirrus and 

multilayered cloud systems from operational satellite imagers at night. Applications 

with Weather Satellites II, Honolulu, Hawaii, 9-11 November 2004. Proceedings. 

SPIE-International Society for Optical Engineering, Bellingham, WA, 2005, pp. 225-

234. 

 

Pavolonis, M. J., 2011b: Advances in extracting cloud composition information from 

spaceborne infrared radiances: A robust alternative to brightness temperatures. Part 

II: Proof of concept. To be submitted to J. Applied Meteorology and Climatology. 

 

Pruppacher, H. R. and J. D. Klett, 1997: Microphysics of clouds and precipitation. 

Second Edition. Kluwer Academic Publishers. 954 pp. 

 

Rogers, R. R. and M. K. Yau, 1989: A short course in cloud physics. Third Edition. 

Butterworth-Heinemann. 290 pp. 

 



 

 89 

Seemann, S., E. Borbas, R. Knuteson, G. Stephenson and H Huang, 2008: Development 

of a Global Infrared Land Surface Emissivity Database for Application to Clear Sky 

Sounding Retrievals from Multispectral Satellite Radiance Measurements. J. of Appl. 

Met. and Clim., 47, 108-123. 

 

Tampieri F., and C. Tomasi, 1976: Size Distribution Models of FLS and cloud droplets in 

terms of the modified gamma function. Tellus, 28, 333-347. 

 

Turner, J., R. J. Allam and D. R. Maine, 1986. A Case Study of the Detection of FLS At 

Night Using Channel 3 and 4 on the Advanced Very High Resolution Radiometer 

(AVHRR). Meteor. Mag., 115, 285-290. 

 

Wielicki, B. A. and R. M. Welch, 1986: Cumulus cloud properties derived using Landsat 

Satellite Data. J. Climate and Meteorology, 25(3), 261-276. 

 

Wilks, D. S., 2006. Statistical Methods in the Atmospheric Sciences. 2nd ed. International 

Geophysics Series, Vol. 91, Academic Press, 627 

 

Zhang, H, 2006. On the Optimality of naïve Bayes with dependent binary features. 

Pattern Recog. Lett., 27, 830-837. 

 

 


