
NOAA ProbSevere v2.0—ProbHail, ProbWind, and ProbTor

JOHN L. CINTINEO

Cooperative Institute of Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

MICHAEL J. PAVOLONIS

NOAA/NESDIS/Center for Satellite Applications and Research/Advanced Satellite Products Team, Madison, Wisconsin

JUSTIN M. SIEGLAFF, LEE CRONCE, AND JASON BRUNNER

Cooperative Institute of Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

(Manuscript received 4 December 2019, in final form 6 March 2020)

ABSTRACT

Severe convective storms are hazardous to both life and property and thus their accurate and timely pre-

diction is imperative. In response to this critical need to help fulfill the mission of the National Oceanic and

Atmospheric Administration (NOAA), NOAA and the Cooperative Institute for Meteorological Satellite

Studies (CIMSS) at the University of Wisconsin (UW) have developed NOAA ProbSevere—an operational

short-term forecasting subsystem within the Multi-Radar Multi-Sensor (MRMS) system, providing storm-

based probabilistic guidance to severe convective hazards. ProbSevere extracts and integrates pertinent data

from a variety of meteorological sources via multiplatform multiscale storm identification and tracking in

order to compute severe hazard probabilities in a statistical framework, using naïve Bayesian classifiers.

Version 1 of ProbSevere (PSv1) employed one model—the ‘‘probability of any severe hazard’’ trained on the

U.S. National Weather Service (NWS) criteria. Version 2 of ProbSevere (PSv2) implements four models,

three naïve Bayesian classifiers trained to specific hazards: 1) severe hail, 2) severe straight-line wind gusts,

3) tornadoes; and a combined model for any of the aforementioned hazards, which takes the maximum

probability of the three classifiers. This paper overviews the ProbSevere system and details the construction

and selection of predictors for the models. An evaluation of the four models demonstrated that v2 is more

skillful than v1 for each severe hazard with higher critical success index scores and that the optimal probability

threshold varies by region of the United States. The discussion highlights PSv2 in NOAA’s Hazardous

Weather Testbed (HWT) and current and future research for convective nowcasting.

1. Introduction

The U.S. National Weather Service (NWS) issues

critical severe weather warnings for the public to take

mitigating action from hazards such as large hail, strong

straight-line winds, and tornadoes. The volume of me-

teorological data available to forecasters has exploded

in recent years with the advent of datasets such as high-

resolution numerical weather prediction (NWP) models

[e.g.,High-ResolutionEnsembleForecast System (HREF);

Roberts et al. 2019], next generation Geostationary

Observational Environmental Satellites (e.g., GOES-16,

GOES-17; Schmit et al. 2015), spaceborne lightning

mappers [e.g., Geostationary Lightning Mapper (GLM);

Rudlosky et al. 2019; Goodman et al. 2013], terres-

trial lightning arrays [e.g., Earth Networks Inc. (ENI)

Total Lightning Network (ENTLN), Vaisala Global

Lightning Dataset GLD360], and Multi-Radar Multi-

Sensor Doppler weather radar products (MRMS; Smith

et al. 2016). These developments present new capabil-

ities and challenges for severe storm forecasting and

warning operations. On one hand, better observing capa-

bilities (spatially, temporally, and increased information-

content) should help forecasters better understand

thunderstorm processes and severe potential; on the

other hand, it is increasingly difficult for forecasters to

integrate the pertinent aspects of all of these novel and

more frequent observations to capitalize on their advan-

tages and quickly identify threats and issue warnings.
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In response to this opportunity and dilemma, the

National Oceanic and Atmospheric Administration

(NOAA) and Cooperative Institute of Meteorological

Satellite Studies (CIMSS) at theUniversity ofWisconsin

(UW) developed a system called the NOAA/CIMSS

ProbSevere model, building on years of applied and

basic research in the fields of satellite, radar, lightning,

and NWP meteorology, as well as image science. This

model, ProbSevere version 1 (PSv1), fused together a

variety of datasets to predict that any given thun-

derstorm in the contiguous United States (CONUS)

would produce any type of severe weather in the near

term (0–60 min). Cintineo et al. (2014, hereafter C14)

and Cintineo et al. (2018, hereafter C18) describe the

methodology and performance of PSv1. PSv1 has

been used by the NWS experimentally since at least

2016, with many forecasters using it to increase con-

fidence in their warnings and lead time to severe

weather hazards (C18).

Through experiments at the Hazardous Weather

Testbed (HWT) and the NOAA Operations Proving

Ground (OPG) conducted between 2013 and 2016 (see

C18), forecasters expressed a desire for different statis-

tical models for each NWS-defined severe weather

hazard, as an enhancement to the ‘‘any severe’’ criterion

of PSv1. The three NWS-defined types of severe

hazards are: 1) large hail (diameter$ 1 in.), 2) straight-

line convective winds (gust$ 58mph), and 3) tornadoes.

Thus, ProbSevere version 2 (PSv2) was subsequently

developed with three models specific to the aforemen-

tioned hazards (ProbHail, ProbWind, and ProbTor),

as well as a maximum hazard probability model

(probSevere), which takes the maximum probability

from ProbHail, ProbWind, and ProbTor. PSv2 was

evaluated at the HWT in 2017–19 and is expected to

become operational within MRMS in 2020. This pa-

per describes the PSv2 methodology, reports on

verification studies, and discusses the potential for

further enhancements.

2. ProbSevere system overview

The ProbSevere system has several aspects: 1) ob-

servation processing, 2) storm identification and track-

ing, and 3) application of machine learning.

a. Observation processing

The ProbSevere system directly utilizes data from

four sources: 1) geostationary satellites, 2) MRMS,

3) ground-based lightning, and 4) NWP. The processing

of each data stream is run in parallel, enabling more

efficient updates to ProbSevere output products. Each

data source is described in further detail below.

1) GOES-EAST ADVANCED BASELINE

IMAGER (ABI)

ProbSevere currently utilizes a single source of sat-

ellite data. The GOES-16 (currently also known as

GOES-East) satellite, which is located at 758W, is used

because it covers the entire CONUS at 5-min resolution

with little degradation in satellite pixel area except

for the far western United States (i.e., California,

Oregon, Washington), where the average pixel area

ranges from 16 to 24km2. As resources allow,GOES-17

(currently also designated as GOES-West) can be

easily incorporated in ProbSevere, but for the time

being, the increase in processing expense outweighs

expected gains in using GOES-West ABI CONUS

scans. GOES-East CONUS observations, taken by

the Advanced Baseline Imager (ABI), occur every

5 min. As in PSv1 (C14), the GOES observations are

processed using radiative transfer software to cre-

ate an infrared ‘‘window’’ based top-of-troposphere

emissivity «tot using ABI band 14 (11.2 mm). This field

is the emissivity a cloud would have if it were at

the tropopause (Pavolonis 2010) and helps account

for seasonal and latitudinal variations in storm top

height. The «tot is subsequently remapped to a cylin-

drical equidistant projection that covers the CONUS

region at 0.028 3 0.028 resolution (approximately

2 km 3 2 km in the midlatitudes). The time rate of

change of the maximum «tot within satellite-identified

storms, referred to as the ‘‘normalized satellite growth

rate’’, is one of the predictors in ProbHail and ProbWind.

The D«tot is analogous to decreases in the minimum ob-

served 11.2-mm brightness temperature in the cloud ob-

ject and has been shown to help discern between severe

and nonsevere convection during the evolution of cu-

mulus to cumulonimbus (Cintineo et al. 2013).

2) MRMS

Several MRMS products are used in the ProbSevere

models [MRMS is derived from the U.S. Next Generation

Weather Radar network (NEXRAD)]. The MRMS prod-

ucts are processed and quality controlled according to Smith

et al. (2016) and include the maximum expected size of hail

(MESH;Witt et al. 1998), vertically integrated liquid density

(VIL density), merged composite reflectivity, 0–2 km AGL

azimuthal shear (LLAzShear), and 3–6 km AGL azimuthal

shear (MLAzShear). The composite reflectivity, VIL den-

sity, andMESH arrive natively in a 0.018 3 0.018 cylindrical
equidistant projection and are simply cropped to the

ProbSevere domain, whereas LLAzShear andMLAzShear

arrive in a 0.0058 3 0.0058 cylindrical equidistant projec-
tion and are remapped to the 0.018 3 0.018 projection
and cropped to align with the reflectivity-based fields.
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3) EARTH NETWORKS TOTAL LIGHTNING

NETWORK

Analogous to PSv1 (C18), ProbSevere ingests observa-

tions of total lightning, from the ground-based ENTLN,

every minute. Each 1-min ENTLN file contains a list of

flashes recorded in the previous minute along with several

attributes such as location, height, amplitude, polarity, and

the type of flash [intra/inter cloud (IC) or cloud-to-ground

(CG)]. These binary files are ingested and processed

with the Warning Decision Support System–Integrated

Information (WDSS-II; Lakshmanan et al. 2007) algo-

rithm, w3ltg, which grids the flashes into a lightning density

field with 2-min temporal resolution and 0.018 3 0.018
spatial resolution on the same domain as the processed

satellite and MRMS gridded products. This total lightning

flash density field (LtgFD) has units of flashes per min-

ute per square kilometer.

4) RAPID REFRESH MODEL (RAP) NWP OUTPUT

RapidRefreshModel (RAP) output from each hourly

forecast cycle is obtained from the National Centers for

Environmental Prediction. Analysis data and forecast

data (1-, 2-, and 3-h forecasts) are utilized. See Table 1

for a complete list of RAP-based parameters that were

considered for inclusion into PSv2. The fields used in

predictors in PSv2 are: MUCAPE, MLCAPE (0–90mb

AGL; 1mb 5 1 hPa), MLCIN (0–90mb AGL), 0–1 km

AGL storm-relative helicity (SRH01), 1–3 kmAGLmean

wind (MW1–3km), effective bulk shear (EBShear), lowest

wet bulb 08C height (wet bulb zero), CAPE in the 2108
to2308C layer (generally referred to as ‘‘hailCAPE’’), and

precipitable water (PWAT). These NWP fields are re-

mapped to a 0.048 3 0.048 cylindrical equidistant grid on

the ProbSevere CONUS domain. ProbSevere uses a

temporal compositing and spatial smoothing technique

over 5 forecast times (hours), described in C14, which

helps mitigate timing and placement errors in the NWP

data. Since RAP data have a latency of about 1 h, the

forecast hours used for this operation are the current

analysis (t0), the previous hour analysis (t21), and the 1-,

2-, and 3-h forecasts (tF1, tF2, and tF3, respectively). Thus,

it is ‘‘centered’’ on tF1, which is approximately the cur-

rent time when the t0 data become available. For most

fields, the temporal compositing is a maximum opera-

tion of the 5 h, but for wet bulb zero and MLCIN, it is a

minimum operation. The MLCIN and SRH01 use a 3-h

temporal compositing (still centered on tF1). The spatial

smoothing uses a 53 5 grid point (;67.5 km3 67.5 km)

Gaussian filter, with a smoothing radius equal to three

standard deviations. The RAP data are essentially used

as the near-storm environment information. Although

mature storms often modify their own environments

locally, which may not be represented by the RAP, bulk

NWP parameters have been shown to provide reliable

guidance on the character of the convective environ-

ment in general.

TABLE 1. Tested parameters in the ProbSevere models and their

data sources. Bolded parameters were selected to be incorporated

into predictors of the ProbSevere models.

Data source Parameters

Radar—MRMS 30-dBZ echo top height

50-dBZ echo top height

Height of the 50 dBZ above 08C
Height of the 50 dBZ above 2208C
Height of the 60 dBZ above 08C
Height of the 60 dBZ above 2208C
0–2 km AGL azimuthal shear (LLAzShear)
3–6 kmAGL azimuthal shear (MLAzShear)

MergedReflectivityQCComposite

Maximum expected size of hail (MESH)

Probability of severe hail (POSH)

Reflectivity at 2108C isotherm

Reflectivity at 2208C isotherm

Vertically integrated ice (VII)

Vertically integrated liquid (VIL)

VIL density

Lightning—ENI Total lightning flash rate (LtgFR)

Total lightning flash density (LtgFD)
d/dt(LtgFR) (dt 5 2 min)

Lightning jump algorithm (LJA) anomaly

NWP—RAP CAPE 0–3 km AGL

CAPE 210° to 2308C (hailCAPE)
Downdraft CAPE (DCAPE)

Lapse rate 0–3 km AGL

Lapse rate 700–500mb

Lifted condensation level (LCL)

Lowest height of 08C
Lowest height of wet bulb 08C (wet

bulb zero)
Minimum average relative humidity

700–450mb

Relative humidity at 08C
MLCAPE (0–90mb AGL)
MUCAPE

MLCIN (0–90mb AGL)

SBCAPE

Precipitable water (PWAT)
ue difference between surface and min(ue) in

700–450mb

Effective bulk shear (EBShear)
Bulk shear 0–1 km AGL

Bulk shear 0–3 km AGL

Bulk shear 0–6 km AGL

Mean wind 1–3 km AGL (MW 1–3 km)
Storm-relative helicity 0–1 km

AGL (SRH01)

Storm-relative helicity 0–3 km

AGL (SRH03)

Significant tornado parameter (fixedmethod)

Satellite—GOES-16 Normalized satellite growth rate (Detot)

Rate of change in cloud-top phase (Dice)
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b. Storm identification and tracking

C14 and C18 summarize the tracking procedures in

ProbSevere, while Sieglaff et al. (2013) details the satellite

tracking methodology. Each model in PSv2 uses identical

radar and satellite objects, identified and tracked using

the WDSS-II algorithm w2segmotionll (Lakshmanan

et al. 2003, 2009). Some of the w2segmotionll config-

uration options have been modified for radar object

tracking, so we will summarize those modifications here.

The WDSS-II algorithm uses an enhanced watershed

algorithm to create radar objects. In ProbSevere, the

algorithm searches for local maxima of 40 dBZ #

composite reflectivity# 57 dBZ. It should be noted that

reflectivity , 40 dBZ is not included in storm objects

whereas reflectivity. 57 dBZ is considered to be 57 dBZ.

Reflectivity maxima are searched at every 1-dBZ

threshold, with the algorithm spatially growing objects

in increments of 5 dBZ until a size, or ‘‘saliency’’, of at

least 40 pixels is reached (approximately 40 km2). For

example, if a local maximum of 47 dBZ is identified, the

algorithm will search for pixels spatially connected to

the maximum pixel greater than or equal to 42 dBZ. If

this yields an object of at least 40 pixels, the object will

stop growing. A second, larger spatial scale is also pro-

duced by the enhanced watershed algorithm at a sa-

liency of 200 pixels, using the same object growing

criteria as above. The scale_0 (40-pixel saliency) objects

are grown to the scale_1 footprints (200-pixel saliency) if

the ‘‘parent’’ scale_1 objects only contain one ‘‘child’’

scale_0 object. The scale_0 objects without a scale_1

parent (‘‘orphans’’) or scale_0 objects with the same

scale_1 parent (‘‘siblings’’) are not modified when merg-

ing radar objects. The purpose of this postprocessing step

of spatially growing certain small objects is to better

capture observations related to processes that may be

outside the core of a storm (e.g., total lightning flashes,

tornadoes). The full w2segmotionll configuration options

can be found in appendix A.

c. Predictor extraction and probability computation

From within the bounds of merged satellite and radar

objects, attributes are extracted from the remapped

satellite, MRMS, lightning, and NWP fields. The D«tot
is computed for satellite objects when possible and

shared with overlapping radar objects after a parallax

correction (a constant cloud height of 9 km is assumed

to perform the correction). MRMS, lightning, and

NWP attributes are extracted from the radar object

footprint (e.g., the spatial maximum, median, or

other percentile values). Model predictors are then

computed from the extracted observations and the

probabilities are computed using a naïve Bayesian

classifier (e.g., Domingos and Pazzani 1997). ProbHail,

ProbWind, and ProbTor are each binary classifiers.

Their classes are ‘‘yes’’ (Cyes) or ‘‘no’’ (Cno) for whether

the given hazard will occur for a given storm within the

next 60 min. Using Bayes’s theorem, the probability of a

storm producing a targeted hazard, given a set of ob-

served predictors F, is defined by

P(C
yes
jF)5

P(C
yes
)P(FjC

yes
)

P(F)
. (1)

The term P(Cyes) is the sample frequency of the haz-

ard occurring (the a priori). Naturally, P(CnojF) 5
1 2 P(CyesjF). The ‘‘naïve’’ assumption of predictor

independence allows for simplification of Bayes’s

theorem by reduction of dimensionality. Thus, Eq. (1)

can be rewritten as

P(C
yes
jF)5

P(C
yes
)P

N

i51

P(F
i
jC

yes
)

P(F)
, (2)

with Fi denoting the value of the ith predictor, and N

the number of predictors. The denominator can be

rewritten as

P(F)5P(C
yes
)P

N

i51

P(F
i
jC

yes
)1P(C

no
)P

N

i51

P(F
i
jC

no
) .

(3)

The P is the product operator, multiplying the proba-

bility of the ith predictor conditional on the storm

being a member of Cyes. Thus, only the a priori and

conditional probability distribution for each predictor is

needed to compute the final probability conditional on

the observed predictor set F. Appendix B shows the

evaluation of one of the naïve Bayesian models using

example data values. See Kossin and Sitkowski (2009)

for details on dimensionality reduction of Bayes’s the-

orem. The assumption of predictor independence is

considered a ‘‘strong’’ assumption since it diverges from

the reality that many meteorological observations of

thunderstorms are indeed correlated. In practice, the

naïve Bayesian classifier works well even while violating

this assumption. However, the performances of the

models do degrade when too many highly correlated

predictors are used, as will be elaborated in the next

section.

The final probSevere model (maximum hazard prob-

ability) of PSv2 simply takes the maximum value of

ProbHail, ProbWind, and ProbTor. This was found to

have the best skill measured to reports of any hazard

type, as opposed to more complex methods that attempt
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to take into account the dependent nature of hazards

(e.g., a joint 3D lookup table of the three naïve Bayesian
classifiers).

3. Predictor selection methodology

The classifiers were trained on 167 days of MRMS,

ENTLN, and RAP data from 2015 and 2016, encom-

passing the months of January through November. For

the GOES-16 predictors, temporal maximum values of

the satellite trends within a 2.5-h time window were

used, as ‘‘lifetime’’ maximum growth rates have been

shown to inform the risk of storm severity in the future,

when severe weather is manifested (e.g., Cintineo et al.

2013). Lifetime maximum or minimum values were not

used for the MRMS, ENTLN, or RAP predictors, but

rather the instantaneous extracted values. One advan-

tage of the naïve Bayesian classifier is that training data

need not all come from the same samples, or storms.

Thus, the training days for GOES-16 were drawn from

2017 since that is when data became available.

Preliminary local storm reports (LSRs) fromNOAA’s

Storm Prediction Center (SPC) rough log (unfiltered)

for each day werematched up to ProbSevere IDs in time

and space in the same manner as C18 (i.e., finding the

spatially closest centroid of a ProbSevere storm object

to the report location within a 62 min window). The

entire history of a storm is labeled as ‘‘severe’’ (or hail-

producing, wind-producing, tornado-producing) if one

or more of the given report types are associated with the

storm at any time. Thus, each set of predictors for each

time step of the severe-labeled storm (or non-severe-

labeled storm) are added to the appropriate training

dataset.

A heuristic approach was taken in determining what

predictors to investigate for this training dataset, taking

into account a literature review of severe storm fore-

casting, data availability, and computation time. Table 1

summarizes the parameters explored. For the MRMS-

based parameters, several percentile values were con-

sidered as predictors for each field (100% [max], 98%,

95%, 90%, 75%, and 50% [median]). These percentiles

are computed from the extracted pixels from each

ProbSevere object at each valid time. From the ENI-

based predictors, the total lightning flash rate (LtgFR)

is a sum of LtgFD from within a storm (rounded to the

nearest flash), and the d/dt(LtgFR) and lightning jump

algorithm anomaly (LJA; Schultz et al. 2011) use op-

erators over time on the LtgFR, or series of LtgFR. The

maximum value of LtgFD within a storm was also

considered. For the RAP-based predictors, the median

values within a storm object extracted from the smoothed

fields [see section 2a(4)] were considered.

As stated previously, the naïve Bayesian classifier

performance degrades if too many correlated predictors

are used. This usually results in a model that is sharper

(i.e., more very high and very low forecasted probabili-

ties) and less reliable (i.e., poor calibration). In light of

this limitation, a few rules of thumb were used when

constructing models to test. For each model, attempts

were made to incorporate: 1) no more than one

reflectivity-based MRMS predictor; 2) no more than

one lightning-based predictor; 3) no more than one

instability-based NWP predictor; and 4) pair together

correlated fields into a two-dimensional (2D) predictor

when possible, which helps reduce the negative impact

of the correlation on the naïve Bayesian classifier. Both

one-dimensional (1D) and 2D predictor distributions

were smoothed with kernel density estimation (KDE)

using a normal kernel function and optimally chosen

bandwidths, following the method of Mielniczuk (1997),

whereby the chosen bandwidths operate such that the

integrated squared error is minimized. The output of the

KDE operation is a 1D (2D) conditional probability

vector (matrix).

Models were thus constructed in an ad hoc manner,

using the most favorable predictors from the train-

ing dataset, which were determined by examining the

maximum ratio between P(FijCyes) and P(FijCno) and

the difference in means of each class. The models were

then systematically evaluated on independent data from

2016 and 2017 (over 200 days), by iterating on previous

model designs and tests.

4. ProbHail

The probability of severe hail classifier (ProbHail)

was trained using two classes: 1) storms that produced

severe hail (diameter$ 1 in.) and 2) storms without any

severe reports. The latter class excluded severe wind and

tornado producing storms in order to help mitigate po-

tential cross contamination between classes which could

occur due to reporting artifacts (e.g., only themost severe

hazard gets reported oftentimes [Morgan and Summers

1982]). ProbHail uses the four predictors summarized

in Table 2. These include the 1) max MESH/wet bulb

zero (Fig. 1, rowA), 2) LtgFR/EBShear (Fig. 1, row B),

3) hailCAPE/PWAT (Fig. 1, row C), and 4) D«tot
(Fig. 2). The a priori value is 0.03, which is approximately

the number of severe hail-producing storms divided

by the total number nonsevere thunderstorms in the

training dataset. Although the most important field in

ProbHail is the max MESH, the wet bulb zero increases

probabilities when lower than 3000 mAGL and decreases

probabilities when greater than 4000 m AGL, which is

consistentwith physical expectations. The ProbHailmodel
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tends to under forecast low-topped storms that generate

severe hail because the MESH is generally smaller

(#0.5 in.) compared to taller storms (the wet bulb zero

predictor does not sufficiently compensate for the re-

duced MESH). Furthermore, low-topped storms also

tend to exhibit low LtgFR, which may indicate a short-

coming in the training dataset whereby more storms are

needed to populate this area of phase space. Left splits

of supercells may also have underrepresented MESH,

reducing ProbHail probabilities.

5. ProbWind

The probability of severe wind classifier (ProbWind)

was trained using two classes: 1) storms that produced

severe convective wind gusts (measured or damage-

inferred) and 2) storms without any severe reports.

Similar to ProbHail, the latter class excluded severe hail

and tornado producing storms in order to limit cross

contamination between classes.

There are several mechanisms for severe wind gen-

eration including: perturbation pressure forces, con-

densate loading, dry air entrainment into downdrafts,

and evaporative cooling (Wakimoto 2001; Atkins and

Wakimoto 1991). Thus, two classifiers were created for

ProbWind—one for ‘‘cellular’’ windstorms and one for

‘‘linear’’ windstorms. While this may seem like a gross

simplification, it aligns well when considering scales of

motion in the atmosphere. The cellular model roughly

encompasses storms on the mesogamma scale (2–20 km),

while the linear model encompasses storms from the

mesobeta (20–200 km) and lower end of the mesoalpha

scale (200–500 km). The cellular model is appropriate for

wet and dry microbursts generated by cellular convection,

while the linear model is appropriate for squall lines,

bowing segments, quasi-linear convective systems (QLCS)

and other mesoscale convective systems (MCS).

For wind events in the training data period (2015),

regions of severe wind producing storms in the United

States were manually determined by looking at the

SPC’s rough log of severe LSRs (NOAA 2016a), the

SPC’s archived mesoanalysis grids (NOAA 2016b), and

archived NEXRAD reflectivity imagery from NOAA

(NOAA 2016c). This was performed in order to better

train models for the particular wind type (cellular or

linear). The severe reports narrowed regions of interest

for each day, while the reflectivity and environmental

fields (e.g., EBShear, MUCAPE, 0–3-km lapse rate)

helpedmake a final determination ofwind type. Latitude–

longitude boxes were drawn around regions of the coun-

try for each training day, demarking either cellular or

linear wind type. Regions that only contained a single

wind report and regions where the distinction between

cellular and linear convection was unclear were excluded.

In general, storms that were relatively small (#20 km in

diameter), and circular were considered cellular, while

storms that were relatively large or elongated (.20 km

in one dimension) and had EBShear $ 20 kt (1 kt ’
0.51 ms21) were considered linear. The cellular type

could have very high EBShear (e.g., supercell environ-

ments) or very low EBShear (e.g., wet microbursts in

‘‘pulse’’ storms). The labeled wind reports were then used

as the ‘‘yes’’ class for the cellular and linear naïve
Bayesian classifiers. In the future, utilization of a storm-

typing algorithmmay further improve the classification of

wind reports.

a. Cellular wind naïve Bayesian classifier

Numerous tests were conducted focusing on severe

wind gusts from cellular storms. The most skillful model

that performed best on the wide range of cellular storms

(e.g., supercells, pulse storms) was the model from C18

(PSv1). The naïve Bayesian classifier optimized for

cellular convection has four predictors, which are listed

in Table 3. As in C14, the a priori is a function of

MUCAPE and EBShear (Fig. 3), with a climatological

frequency built in.

The other predictors for this naïve Bayesian classi-

fier are the spatial maximum MESH within an object

(Fig. 4), the LtgFR/EBShear (Fig. 1, row B), and the

D«tot (Fig. 2). This naïve Bayesian classifier has been

shown to performwell in a number of environments (see

C18), but lightning deficient storms and dry microbursts

remain a challenge. Dry microbursts are particularly

challenging, as severe downbursts can occur in low-

reflectivity storms that fail to meet the minimum object

identification requirements.

b. Linear wind naïve Bayesian classifier

The linear wind classifier utilizes the four predictors

shown in Table 3. The four predictors are 1) the a priori,

which is a function of MLCAPE and MW 1–3 km

(Fig. 5), 2) maximum VIL density (Fig. 6), 3) 98th per-

centile LLAzShear/MW 1–3 km (Fig. 7, row A), and

4) 98th percentile MLAzShear/LtgFR (Fig. 7, row B). The

98th percentile AzShear fields were used in lieu of the

TABLE 2. The predictors used in the ProbHail naïve Bayesian

classifier.

ProbHail predictors

a priori 5 0.03

Max MESH/wet bulb zero

LtgFR/EBShear

hailCAPE/PWAT

Normalized satellite growth rate
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maximum fields due to the noisy nature of the AzShears

and maximum operation.

Kuchera and Parker (2006) found that the wind in the

highest positively buoyant level in the surface inflow

layer discriminated well between nonsevere convection

and severe wind producing convection. TheMW1–3 km

field in ProbWind is computed over 1–3 kmAGL, which

likely contains the top of the inflow layer of many

storms. Thus, the MW 1–3 km is likely correlated with

the surface inflow wind field from Kuchera and Parker

(2006). The MRMS AzShear products were found to be

robust indicators of short-term severe wind gust poten-

tial. However, when the azimuthal gradient is not pres-

ent in the NEXRAD velocity field, ProbWind may

under forecast severe wind. Although the LLAzShear,

MLAzShear, andMW1–3 km help improve severe wind

prediction relative to PSv1, the forecast skill for light-

ning deficient linear systems is limited.

c. Final ProbWind

To create a final probability value for ProbWind,

different thresholds of EBShear and MW 1–3 km were

evaluated in order to discern when the cellular or linear

wind models should be applied. However, no set of

values that discriminated well enough for linear and

cellular storms was found. This could be because severe

wind gusts occur on a continuum of MW 1–3 km and

EBShear phase space. It is also possible that using

FIG. 1. (column 1) The probability of a nonsevere storm, (ccolumn 2) probability of a stormwith severe hail, and (column 3) the ratio of

severe hail probability to nonsevere probability, conditional on (rowA) thewet bulb 08Cheight andMRMSMESH, (rowB) effective bulk

shear and ENI flash rate, and (row C) precipitable water and CAPE between 2108 and 2308C. Columns 1 and 2 are lookup tables in

ProbHail. The larger values in the ratio plots in column 3indicate larger contributions to ProbHail.
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spatial metrics such as storm size and aspect ratio (which

was done qualitatively to gather training datasets) may

better discriminate between linear and cellular storms

and thus help determine when to compute the appro-

priate classifier. Given the challenge of automated dis-

crimination of between wind type, a 2D lookup table

was created using the joint distributions of computed

cellular and linear models for thunderstorms (Fig. 8).

This was computed in the same fashion as the a priori

predictor in the cellular wind model, except it is condi-

tional on the naïve Bayesian classifier output from the

cellular and linear models instead of physical quantities.

Figure 8 is the final lookup table to compute ProbWind.

The joint lookup table of the linear and cellular models

produced the best skill when considering all severe wind

events in the validation data from 2016 and 2017 (not

shown). The increased performance is possibly due to

the fact that some storms have both ‘‘cellular’’ and

‘‘linear’’ features.

6. ProbTor

The probability of tornado classifier (ProbTor) was

trained using two classes: 1) storms that produced a

confirmed tornado (EF01) and 2) storms associated

with reports of severe hail and/or severe wind reports,

but no tornado reports. Unlike ProbHail and ProbWind,

the null class for this model contains severe, but non-

tornadic storms (hereafter, ‘‘nontornadic storms’’).

This was done in order to better simulate what fore-

casters must discern when issuing severe weather

warnings—forecasters often ask the question: ‘‘Why do

some severe storms produce tornadoes and others do not.’’

ProbTor utilizes the six predictors summarized in

Table 4. These include the 1)MLCAPE/MLCIN (Fig. 9),

2) max LLAzShear (Fig. 10), 3) 98th percentile

LLAzShear/SRH01 (Fig. 11, row A), 4) 98th percentile

MLAzShear/LtgFD (Fig. 11, rowB), and 5)EBShear/MW

1–3 km (Fig. 11, row C). The a priori of 0.01 is approxi-

mately the number of tornadic storms divided by the total

number thunderstorms in the training dataset.

When initially developed, the ProbTor false alarm

ratio was large, particularly in regions of high MLCIN

and/or low MLCAPE. It is generally understood that

tornadoes occur less frequently when surface-based

CAPE is absent or is located above a deep layer of

CIN (e.g., Davies 2004). The MLCAPE/MLCIN pre-

dictor was constructed in a unique way, compared to

the other predictors in PSv2. Cumulative distribution

functions (CDFs) were created for the MLCIN and

MLCAPE fields for the tornadic class of storms. The

shapes of the CDFs were shifted to lower ranges of

MLCAPE (closer to zero) and MLCIN (more negative)

FIG. 2. The conditional probability of a severe storm (red) and a

nonsevere storm (blue) given a normalized satellite growth rate

from GOES-16. A larger ratio of the severe and nonsevere prob-

abilities (black) indicates a larger contribution of this predictor in

the naïve Bayesian models.

TABLE 3. The predictors used in the ProbWind naïve Bayesian clas-

sifier. [Final ProbWind 5 f(cellular ProbWind, linear ProbWind).]

Cellular ProbWind predictors Linear ProbWind predictors

a priori 5 f(MUCAPE,

EBShear)

a priori 5 f(MLCAPE, MW

1–3 km)

Max MESH Max VIL density

LtgFR/EBShear 98th percentile LLAzShear/MW

1–3 km

Normalized satellite growth rate Flash rate/98th percentile

MLAzShear

FIG. 3. The conditional probability of any severe, given the

MUCAPE and effective bulk shear. This is an update to Fig. 2 in

Cintineo et al. (2014).
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where frequent false alarms were occurring. These

shifted CDFs act as physically based ‘‘fuzzy’’ functions

(see Fig. 9), and agree well with previous sounding-

derived research (e.g., Thompson et al. 2003; Rasmussen

andBlanchard 1998). The shifts 1) minimize impacts due

to uncertainty in NWP-modeled MLCIN and MLCAPE,

2) maintain physical consistency with previous research

(i.e., low MLCIN and sufficient MLCAPE are necessary

but not sufficient conditions for tornadogenesis), and

3) mitigates impact of relatively small tornado sample

size. The minimum factor between the MLCIN and

MLCAPE functions is multiplied by the a priori. This

factor may vary between the heuristically determined

floor of 0.1 and 1.0. Thus, the final ProbTor a priori can

vary between 0.001 and 0.01, meaning large MLCIN or

small MLCAPE can only reduce the a priori. Using the

conditional probability distributions for these two fields

did not show good discrimination between tornadic

and nontornadic storms but implementing these fuzzy

functions reduced the false alarm ratio markedly,

improving the overall skill of ProbTor. The MLCIN

and MLCAPE CDFs produced from the tornadic class

agreed well with previous research relating frequency of

tornado to those fields (Brotzge et al. 2013; Davies 2004;

Thompson et al. 2003; Rasmussen and Blanchard 1998).

The NEXRAD-based MRMS velocity fields, which

capture storm rotation, are essential to ProbTor (par-

ticularly the LLAzShear) despite increased noise rela-

tive to the reflectivity-based fields (e.g., Miller et al.

2013). The increased noise is due to a number of effects,

including radar return echoes from nonmeteorological

targets due to anomalous propagation (e.g., ducting in

the atmosphere), wind farms, automobiles, birds, and

insects, as well as interference from the sun and micro-

wave frequency towers. From a meteorological per-

spective, strong turbulence within storms and strong

flow that is not aligned with storm motion (e.g., ahead

of a squall line) may create erroneous regions of high

AzShear despite no organized rotation within the storm.

Furthermore, the lowest elevation tilt of 0.58 ofNEXRAD

radars often overshoots low-level rotation within storms

with the current CONUS NEXRAD coverage, missing

potential tornadic threats. Nonetheless, the MRMS

FIG. 4. The conditional probability of a severe storm (red) and a

nonsevere storm (blue) given aMRMSMESHvalue. A larger ratio

of the severe and nonsevere probabilities (black) indicates a larger

contribution of this predictor in ProbWind (cellular).

FIG. 5. The conditional probability of severe wind from a linear-

type storm, given the MLCAPE and mean wind 1–3 km AGL.

FIG. 6. The conditional probability of severe wind from a linear-

type storm (red) and a nonsevere storm (blue), given its maximum

VIL density. A larger ratio of the severe and nonsevere probabil-

ities (black) indicates a larger contribution of this predictor in

ProbWind (linear).
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AzShear is a skillful predictor for classifying between

tornadic and nontornadic storms.

The environmental EBShear and SRH01 have been

shown to help discriminate between tornadic and non-

tornadic storms (Thompson et al. 2007). Although the

MW1–3 kmwas evaluatedmainly for the sake of being a

potential predictor in ProbWind, it also stood out as

an excellent NWP-based predictor for tornadoes. The

MW 1–3 km captures strong low-level jets, which in-

crease the storm-relative inflow and supercell potential

(Markowski and Richardson 2010) and is a key factor in

the formation of strong tornadoes (Broyles et al. 2018).

Another possibility is that MW 1–3 km is a proxy for

strong midlevel storm-relative flow that is important for

strengthening the mesocyclone. Regardless, it is a useful

field in ProbTor and is coupled with the EBShear, with

which it shares only a weak correlation (Pearson

correlation 5 0.17 for tornadic storms).

7. Validation

a. Method

After the initial training and validation of PSv2 using

SPC storm reports from 2015 and 2016/17, respectively, a

final evaluation of PSv2 models was performed and val-

idated with 2018 data from Storm Data, the National

Centers for Environmental Information (NCEI) publi-

cation that aggregates and quality-controls official storm

reports from the NWS field offices for many phenomena,

FIG. 7. (column 1) The probability of a nonsevere storm, (column 2) probability of severe wind from a linear-type storm, and (column 3)

the ratio of severe wind probability to nonsevere probability, conditional on (row A) 98th percentile LLAzShear and mean wind 1–3 km

AGL and (rowB) the ENI flash rate and 98th percentileMLAzShear. Columns 1 and 2 are lookup tables in ProbWind (linear). The larger

values in the ratio plots (column 3) indicate larger contributions in ProbWind.

FIG. 8. The probability of severe wind gusts for a storm condi-

tional on the computed cellular and linear naïve Bayesian classifier

probabilities. This is the final lookup table for ProbWind.
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including severe hail, severe convective wind gusts, and

tornadoes (NOAA 2019a). ProbHail was validated with

severe hail reports, ProbWind was validated with severe

wind reports (indicated by damage or measured gusts),

ProbTor was validated with tornado reports, and

probSevere was validatedwith any severe reports. These

reports were associated with ProbSevere objects in

space and time as explained in section 3 and C18.

Using a history of each object, the probability of de-

tection (POD), false alarm ratio (FAR), and critical

success index (CSI) for the different models were com-

puted. From the contingency table (see Table 5), we can

define the metrics thusly:

POD5
A

e

(A
e
1B)

, (4)

FAR5
C

(A
w
1C)

, (5)

CSI5 [(POD)21 1 (12FAR)21 2 1]21 , (6)

where Ae is the number of warned events (e.g., hail,

wind, or tornado reports), Aw is the number of verified

warnings, B is the number of unwarned events (misses),

and C is the number of unverified warnings (false

alarms). Although ProbSevere is not generating warn-

ings, mapping the ProbSevere probabilistic output to a

yes/no ‘‘warning’’ facilitates the comparison to NWS

severe thunderstorm and tornado warnings.

To align the ProbSevere validation analysis with NWS

warning and verification practices, initial ‘‘warning’’

times for ProbSevere objects were artificially created upon

attainment of a probability threshold. For hail (ProbHail)

and wind (ProbWind) the ProbSevere ‘‘warnings’’ were

taken to be valid for 45 min. For ProbTor verification,

each ‘‘warning’’ was assigned an expiration time of

30 min. The 45- and 30-min criteria represent the mid-

points of the range in warning lifespan given in the NWS

Weather Forecast Office Severe Weather Products

Specification document (NWS 2018). After a given

ProbSevere ‘‘warning’’ expires, for a given probability

threshold, the ‘‘warning’’ can then be reissued if the

probability threshold is subsequently met after the ini-

tial ‘‘issuance’’ time. Thus, a single storm can generate

multiple warnings.

Storm Data reports and ProbSevere data were ob-

tained from January through December 2018 for a total

of 227 days (see Table 6 for a list of dates). The

ProbSevere data were saved from near real-time pro-

cessing at UW-CIMSS during 2018. Each date represents

the ‘‘convective day’’ defined as starting at 1200 UTC of

the given date and ending at 1159 UTC of the following

day. This validation dataset resulted in nearly 10800

TABLE 4. The predictors used in the ProbTor naïve Bayesian

classifier.

ProbTor predictors

a priori 5 0.01

MLCAPE/MLCIN

Max LLAzShear

98th percentile LLAzShear/SRH01

98th percentile MLAzShear/LtgFD

EBShear/MW 1–3 km

FIG. 9. The a priori factor for ProbTor as a function of (left) MLCIN and (right) MLCAPE in a storm. The

original a priori for ProbTor (0.01) is multiplied by the minimum of these two factors. The red horizontal ‘‘cutoff’’

lines denote theminimumvalue either function is allowed to attain (the value is 0.1).Where these lines intersect the

blue lines show the values ofMLCIN andMLCAPEwhere theminimuma priori factor occurs (290 J kg21MLCIN

and 150 J kg21 MLCAPE). Please see the text for details on how these functions were created.
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severe thunderstorms (3150 hailstorms, 8250 windstorms,

and 840 tornadic storms) and 25000 severe hail, wind, or

tornado reports.

Tomitigate storm object mergers and splits and better

link together broken storm tracks, the python library

‘‘besttrack’’ was employed (Harrison 2018; Lakshmanan

et al. 2015). This library utilizes the Theil-Sen estimator,

which fits a line to storm centroid points (i.e., a storm

track) by choosing the median of the slopes of all lines

through pairs of points. This automated process helps

mitigate but does not completely eliminate broken

tracks. Thus, several longevity thresholds were placed

on ProbSevere storm objects in order to ignore segments

of storms that change object ID frequently: 15, 30, 45,

and 60 min. Applying the different longevity thresholds,

as well as a lightning activity threshold of 2 flashes

per minute, yielded 190 300, 166 800, 110 900, and 81 300

nonsevere thunderstorms in the dataset, respectively.

Short-lived severe storms were not screened out in order

to ensure that all events (i.e., severe reports) were in-

cluded in scoring.

b. Results

From the performance diagrams in Fig. 12, for any

given storm longevity threshold, the maximum hazard

probability of PSv2 (‘‘probSevere’’) improves upon

PSv1 at every forecast probability bin (between 10%

and 90%), by as much as 0.08 CSI. As a function of in-

creasing storm longevity threshold, the CSI increases for

each PSv2 model, albeit by a small amount (range

is #0.03 CSI), suggesting that the validation is fairly

insensitive to the threshold value. ProbHail is the best

performing model, followed by probSevere, ProbWind,

and ProbTor.While not explicitly shown, PSv2 improves

upon the maximumCSI of PSv1 for each hazard type, by

0.05 CSI for ProbHail, 0.04 CSI for ProbWind, and 0.1

CSI for ProbTor at the 45-min storm longevity threshold

(although PSv1 only provided the probability of any

severe weather).

In Fig. 12, the 45-min storm longevity threshold per-

formance diagram is annotated with a black box to

highlight the PSv2 comparison with the NWS, be-

cause the 45-min constraint yielded the ratio of severe

storms to nonsevere storms, 8.9%, which was closest to

historical climatology, 10% (NWS 2010; FEMA 2007).

Unofficial NWS validation metrics were obtained from

the Iowa State Mesonet for all CONUS NWS offices

for the dates in Table 6 (Iowa State University 2019).

Comparing the 80% probability threshold for probSevere

and NWS severe thunderstorm and tornado warnings

(orange triangle), probSevere has slightly lower FAR

compared to the NWS (0.47 versus 0.53), but much lower

POD (0.48 versus 0.76), yielding a CSI of 0.34 compared

to 0.41 for the NWS. Comparing the 50% probability

threshold for ProbTor and NWS tornado warnings only

(upside-down red triangle), ProbTor has a higher FAR

(0.80 versus 0.74) and much lower POD (0.33 versus

0.58), yielding a CSI of 0.14 compared to 0.22 for the

NWS. While NWS warnings are more skillful, PSv2 can

highlight storms early and increase warning lead time

and confidence (see discussion in section 8). Another

source of uncertainty in comparing PSv2 with NWS is

the fact that PSv1 was used experimentally through-

out the NWS in 2018. Thus, some portion of the

NWSwarnings could be influenced by ProbSevere, since

PSv1 and PSv2 use similar approaches, thus making the

comparison between PSv2 and NWS not completely

independent. One last, and perhaps significant, reason

for differences between the skill of PSv2 and NWS is the

quality of severe reports, particularly wind reports. The

quality of estimated wind reports has been found to be

suspect, due to population density, time of day, wind

gust estimate inflation, and warning-verification biases

(e.g., Edwards et al. 2018; Trapp et al. 2006). Training

and evaluating a model based on higher quality mea-

sured wind reports may yield a better result.

The reliability diagram for probSevere (maximum

hazard probability) shows an over forecasting bias

above the 40% forecast probability threshold (Fig. 13).

Using themanual verification analysis techniques in C18

on storms from 2017 demonstrated generally better

forecast calibration (yellow line in Fig. 13), which is

likely due to more accurate storm track associations

using the manual method, rather than the automated

method of this paper. Nevertheless, efforts are ongoing

FIG. 10. The conditional probability of a tornadic storm (red) and

severe, nontornadic storm (blue), given its maximum 0–2 kmAGL

AzShear. A larger ratio of the severe and nonsevere probabilities

(black) indicates a larger contribution of this predictor in ProbTor.
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to improve the reliability of PSv2, including utilization

of more advanced machine learning techniques that are

less affected by correlated predictors.

In general, the process of matching up reports to

ProbSevere object centroids (see section 3) works

well most of the time, but it has the drawback of er-

roneously assigning reports to spatially closer storms

if the actual parent storm centroid was farther away,

as for example, in a squall line, where the centroid

may be displaced a considerable distance from the

actual severe weather report. This may be one source

of error for ProbSevere (v1 and v2) that can create a

double penalty effect of increased false alarms and

increased misses, hampering perceived performance.

Future work may attempt to assign ‘‘valid areas’’ or

‘‘polygons’’ to ProbSevere ‘‘warnings’’ based on the ob-

ject shape and motion.

FIG. 11. (column 1) The probability of a nontornadic, severe storm, (column 2) probability of a tornadic storm, and (column 3) the ratio of

tornadic probability to nontornadic probability, conditional on (rowA) 98th percentile 0–2 kmAGLAzShear and 0–1 kmAGL storm-relative

helicity, (row B) ENI flash density and 98th percentile 3–6 kmAGLAzShear, and (row C) effective bulk shear andmean wind 1–3 kmAGL.

Columns 1 and 2 are lookup tables in ProbTor. The larger values in the ratio plots (column 3) indicate larger contributions in ProbTor.

TABLE 5. A contingency table defining the joint distribution

of yes and no forecasts (fyes and fno) and yes and no observations

(Oyes andOno). The terms are defined as follows:Ae is the number

of warned events (i.e., reports), Aw is the number of verified

warnings, B is the number of missed events (reports), and C is the

number of false alarms (i.e., unverified warnings).

fyes fno

Oyes Ae, Aw B

Ono C —
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An analysis of the annual cycle shows that the CSI of

PSv2 peaks in March–April (Fig. 14). As the number of

storms increase in May–June–July, the CSI for the

overall probability of severe decreases to about 0.35. A

further decrease in CSI is observed in the August–

September–October timeframe. The decrease in CSI is

most likely linked to a decrease in environmental shear

due to the subtropical jet stream migrating northward.

With less synoptic forcing, ‘‘pulse’’ severe storms and

multicell thunderstorms are the predominant storm

types in much of the summer months, which are noto-

riously more difficult to forecast than supercells and

strong convective lines (e.g., Miller and Mote 2017)

and exhibit less distinct characteristics than nonsevere

storms with respect to radar, lightning, satellite, and

NWP features. In November the CSI increases to 0.3,

possibly due to increased shear from stronger upper-

level jets coupled with sufficient thermodynamic

parameters. As the number of storms decreases in

December–January–February, the CSI drops to about

0.2. The annual cycle in maximum CSI for each of the

three severe hazards follows a very similar pattern as the

maximum hazard probability, probSevere. The season-

ality of CSI for the combined NWS severe thunderstorm

and tornado warnings exhibits a very similar behavior to

probSevere, and the seasonality of CSI for NWS tornado

warnings is similar to that of ProbTor, with September

and November being exceptions. Notably, the maxi-

mum CSI for ProbTor occurs in the transition from

winter to spring and autumn to winter when strong

synoptic forcing and instability are most likely to be

collocated.

Figure 15 illustrates the relationship between PSv2

performance and NWS county warning area (CWA).

For each ProbSevere storm object, the mean centroid

position over its lifetime was used to place it within a

CWA. For each CWA, storms were then aggregated

using the given CWA and all spatially adjacent CWAs.

For example, the Milwaukee, Wisconsin, CWA aggre-

gation would include the CWAs of Milwaukee, La

Crosse, and Green Bay, Wisconsin; Quad Cities Iowa–

Illinois; and Chicago, Illinois. The spatial aggregation

helps ensure that statistical relationships are more ro-

bust. Verification metrics for each geographic region

were then calculated as previously described. The bot-

tom right image shows the overall probability of se-

vere threshold that maximizes the CSI. The optimal

probability threshold is a strong function of geogra-

phy, where 30%–40% thresholds are common in the

Northeast, 40%–70% thresholds are typical in the

Southeast, and thresholds ranging from 60%–90% are

prevalent west of the Appalachian Mountains to the

Great Plains. In the mountainous regions of the

western United States, the CSI is maximized when

the probability is around 80%. Along the West Coast,

the optimal probability threshold varies significantly

due to limited sampling (fewer observed storms). The

largest values of CSI are found in the northern/southern

plains and northeast (0.35–0.50), although the probability

threshold required for maximizing the CSI varies con-

siderably as noted earlier. The Southeast exhibits lower

CSI, approximately 0.25–0.3, owing to a higher FAR.This

could be due to a number of reasons, including tall storms

that grow quickly from a satellite perspective, lightning-

rich storms, erroneously high values in the MESH algo-

rithm, or an inflated number of wind reports based

on minor tree damage and warning-verification bias

(Edwards et al. 2018). The IntermountainWest andWest

Coast have notably lower CSI likely due to differences in

storm type (e.g., relatively more dry microbursts), poorer

radar coverage, lower overall population density, and

smaller sample size.

8. Discussion and conclusions

ProbSevere version 2 (PSv2) was developed using an

ad hoc ingredients-based approach (e.g., Doswell et al.

1996) in a statistical framework. Unlike PSv1, PSv2

provides probabilistic guidance for specific hazards in

accordance with National Oceanic and Atmospheric

Administration (NOAA) severe weather criteria (large

hail, strong wind gusts, and tornadoes). When compared

to storm reports, the critical success index (CSI) of PSv2

is reasonably comparable to the CSI of official NOAA

National Weather Service (NWS) forecasts. As ex-

pected, human experts at the NOAA NWS determine

which storms warrant severe thunderstorm or tornado

warnings with greater accuracy than PSv2. PSv2, how-

ever, often highlights storms that go on to produce

TABLE 6. Validation dates from 2018. Each day represents the

‘‘convective day’’ from 1200UTC of the given date to 1159 UTC of

the next date.

Month Dates Count

January 12, 21–23 4

February 6, 7, 10, 11, 15, 16, 20, 21, 24, 25 10

March 1, 5, 10, 16–20, 23–28 14

April 3, 4, 6, 7, 10, 13–15, 21–23, 29, 30 13

May 1–31 31

June 1–30 30

July 1–31 31

August 1–31 31

September 1–21, 24–27, 30 26

October 1–14, 20–23, 28, 29, 31 21

November 1, 2, 5–7, 24, 30 7

December 1, 2, 9, 14, 20, 21, 26, 27, 31 9
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severe weather at an earlier stage of development,

thereby giving forecasters insight that allows for more

confident and timely warning decisions.

PSv2 was formally evaluated in the NOAAExperimental

Warning Program (EWP) at the Hazardous Weather

Testbed (HWT) from 2017–19. The model output was

evaluated between 4 and 6 weeks each spring during the

3 years, where 68 forecasters answered four survey

questions at the end of each day of operations in the

HWT, which yielded 232 forecaster individual sets of

daily responses. From the forecaster feedback, ;80%–

90% of forecaster responses said that ProbSevere in-

creases confidence in their warning decision making,

while ;60%–70% indicated that ProbSevere increases

lead time to severe hazards. For ProbTor, ;40%–60%

and ;20%–50% of forecasters indicated increased

confidence and lead time, respectively, depending on the

year of the experiment (Fig. 16). The percentage of

‘‘yes’’ responses to the question, ‘‘does ProbTor increase

lead time for your tornadowarnings’’ fluctuated year-to-

year more so than responses to other questions. This is

possibly due to high variability in the number and in-

tensity of tornadoes across the CONUS during the

3 years of ProbTor being evaluated in the EWP. For

instance, while the number of inflation-adjusted torna-

does (documented by the NOAA Storm Prediction

FIG. 12. Starting with the top left, clockwise: performance diagrams for PSv2 models constrained by 15-, 30-, 60-,

and 45-min storm longevity thresholds. Colored circles with labels denote certain forecast probability values.

‘‘probSevere’’ is themaximumhazard probability. NationalWeather Service (NWS) performance is denoted on the

45-min storm longevity performance diagram at the bottom left. Python code from Lagerquist and Gagne (2019)

was used to construct this plot.
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Center [NOAA 2019b]) inMay 2017 was approximately

average, the tornado count was well below average for

May 2018, and well above average for May 2019 (the

HWT-EWP operated during most weeks in May). In

fact, an unusually active late May 2019 led to an ex-

tended tornado outbreak across the CONUS (Gensini

et al. 2019). The forecasters also had an opportunity for

writing open-ended feedback related to PSv2. Of the

daily written responses, 16% specifically highlighted

upward or downward ‘‘trends’’ in model probabilities in

being a useful aspect of PSv2 models. Future work

should evaluate how time tendencies of PSv2 model

probabilities may inform subsequent occurrence or non-

occurrence of severe weather.

A primary objective of ProbSevere is to provide in-

formation in support of determining which developing

storms will become severe in the next 60 min or so. The

NWS does not systematically collect statistics on lead

time relative to the first report of severe weather asso-

ciated with a given storm, so comparisons of lead time

between ProbSevere and official NWS warnings relative

to the first report of severe weather, for a given storm,

requires time-consuming manual analysis as reported in

Cintineo et al. (2018). Cintineo et al. (2018) showed that

the ProbSevere Version 1 lead time to the first report

of severe weather was 34 min, compared to 16 min for

official NWS warnings. PSv2 provides similar addi-

tional lead time relative to the first report of severe

weather (30–34 min, depending on probability thresh-

old). In practice, it is difficult to quantify the impact of

ProbSevere on severe weather warning operations, as

ProbSevere is just one information source out of several

that influence decision making. However, past research

and recent forecaster feedback suggest that PSv2 can

alert forecasters at least 5–10 min earlier than they may

otherwise have had with only radar interrogation, in

many cases. Nevertheless, more research is needed to

quantify how PSv2 affects lead time statistics in the NWS.

With vastly increasing quantity and quality of mete-

orological data and improving computing capacities,

there are several areas of research that seem fruitful for

making rapid progress in the field of severe storm

nowcasting. One such area is that of ‘‘deep learning’’,

which, for example, can operate convolutional neural

networks (CNN) on sequences ofmeteorological images

of cloud fields or storms in radar, satellite, lightning,

or NWP output to help automatically identify salient

features conducive to severe hazard development or

maintenance. The main advantage of CNNs is that they

may learn from images without the need to calculate

features beforehand (e.g., mesocyclone detection, above

anvil cirrus plume detection). This is an area of active

research in severe storm prediction (e.g., McGovern

et al. 2019; Gagne et al. 2019), tropical cyclone intensity

estimation (Wimmers et al. 2019), and storm-top satel-

lite feature identification (Bedka et al. 2018; Cintineo

et al. 2020, manuscript submitted to Wea. Forecasting).

CNNs may also be an excellent method to extract value

from the spatial information of lightning that the GLM

provides.

Although the naïve Bayesian method has been ef-

fective despite its simplicity, other machine learning

techniques are generally more robust for large quanti-

ties of correlated data. Random forests or gradient

boosted machines, for example, train an ensemble of

models (often decision trees) to make classifications or

predictions. Random forests have been employed in a

FIG. 13. PSv2 forecast calibration from 2017 and 2018 (left ordinate)

and forecast probability frequency (purple bars; right ordinate).

FIG. 14. The maximum CSI by month for each PSv2 model and

the National Weather Service (NWS) severe thunderstorm and

tornado warnings (sev1 tor) and tornado warnings only (tor only).

The dates are from 2018 (see Table 6). Gray and purple bars

denote the number of severe and tornadic storms, respectively,

in the dataset for a given month. Note that ‘‘probSevere’’ refers

to the maximum hazard probability, scored against any severe

report type.
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variety of fields with much success and offer a more

systematic approach to optimization than the naïve
Bayes (e.g., Lagerquist et al. 2017; McGovern et al.

2014). Tools such as principal component analysis and

multipass permutation tests (e.g., McGovern et al. 2019)

help to objectively rank the importance of features.

Future work will evaluate how ProbSevere can be im-

proved through utilization of a more sophisticated ma-

chine learning model and tuned objectively through

multipass permutation tests. A more advanced tech-

nique may also alleviate the need for multiple conceptual

models, such as is currently the case for the ProbWind

component of PSv2.

Several observational data sources might also serve to

improve the ProbSevere models. For instance, recent

work has highlighted how polarimetric variables can

enhance hail size prediction (such as the hail differ-

ential reflectivity HDR, Murillo and Homeyer 2019).

With respect to ProbTor, recent research has suggested

that radar-observed radial divergence and azimuthal

shear from the upper levels of storms can be excellent

indicators of imminent or ongoing tornadic activity

(Sandmæl et al. 2019). Such metrics should be priori-

tized for future investigation and potential inclusion into

ProbSevere and MRMS.

Last, bridging the nexus between the ‘‘nowcast’’

period and ‘‘forecast’’ period of severe storm predic-

tion is an area of active research (e.g., Rothfusz et al.

2014; Lawson et al. 2018). Roughly speaking, for se-

vere storm prediction, this is the 1–6 h time frame

before initial severe hazards are observed. Blending

the physically based NWP models (e.g., convection-

allowingmodels) with empirical models like ProbSevere

to provide forecasters with consistent and continuous

guidance is a challenge. Identifying situations when

(or how much) to ‘‘trust’’ the NWP guidance (or en-

semble guidance) and when not is a common task

for forecasters. Automated methods to determine the

FIG. 15. (top left) Probability of detection (POD), (top right) false alarm ratio (FAR), (bottom left) critical success index (CSI), and

(bottom right) most skillful probability threshold for PSv2. The POD, FAR, and CSI correspond to the probability threshold maximizing

CSI. These scores are aggregated for National Weather Service county warning area (CWA) boundaries and include adjacent CWAs

(see text).
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inherent predictability of a given scenario will benefit

forecasters directly as well as via improved statistical

model guidance that could incorporate this information

with streaming meteorological observations to provide

more accurate guidance, sooner.
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APPENDIX A

Storm-Tracking Configurations

The algorithm w2segmotionll is a WDSS-II execut-

able used for the identification and tracking of radar and

FIG. 16. The percentage of Hazardous Weather Testbed forecaster ‘‘yes’’ responses to daily end-of-operations

questions, by year and model type (left) all ProbSevere v2 models and (right) ProbTor model only. The two

questions were, ‘‘Does the product increase your confidence in warning decision making?’’ (‘‘Increase confidence?’’),

and, ‘‘Does the product increase your lead time to severe hazards?’’ (‘‘Increase lead time?’’). The ProbTor only

questions referred to tornado warnings and lead time to tornado occurrences, whereas the ProbSevere v2 (all models)

questions pertained to severe thunderstorm and tornado warnings and lead time to any National Weather Service–

defined severe weather type.
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satellite objects in ProbSevere. Here are the configura-

tion options for each use of the executable:

1. Radar identification and tracking:
d trackedProductName (2T): MergedReflectivity

QCComposite;
d ‘‘min max incr maxdepth’’ (2d): ‘‘40 57 5 21’’;
d prunerSizeParameters (2p): 40, 200, 300, 0:0, 0, 0;
d smoothing filters (2k): percent: 75:4:0:4;
d clusterIDMatchingMethod (2m): MULTISTAGE:

2:10:0.

2. Satellite identification and tracking:
d trackedProductName (2T): emiss11_tot;
d ‘‘min max incr maxdepth’’ (2d): ‘‘40 80 9 21’’;
d prunerSizeParameters (2p): 15, 60, 120, 240:0:0, 0, 0, 0;
d smoothing filters (2k): percent: 50:1:0.33:1, per-

cent: 100:1:0.33:1, percent: 50:1:0.33:1, percent: 30:

1:0.33:1, threshold: 40:80;
d clusterIDMatchingMethod (2m): MULTISTAGE:

2:15:0.

APPENDIX B

Naïve Bayesian Classifier Calculation

This is an example evaluation of the ProbHail naïve
Bayesian classifier using example data and the lookup

tables found in Figs. 1 and 2.

From the paper text, Eq. (3) can be substituted

into Eq. (2):

P(C
yes
jF)5

P(C
yes
)P

N

i51

P(F
i
jC

yes
)

P(C
yes
)P

N

i51

P(F
i
jC

yes
)1P(C

no
)P

N

i51

P(F
i
jC

no
)

.

(B1)

The term P(CyesjF) is the final probability of severe hail.
The term P(Cyes) is the a priori, which is 0.03 for

ProbHail.

Here, P(Cno) 5 1 2 P(Cyes) 5 0.97.

Let N be the number of predictors for ProbHail (4):

d i 5 1: Max MESH/wet bulb 08C height (see Fig. 1,

row A);
d i 5 2: ENI flash rate/effective bulk shear (see Fig. 1,

row B);
d i 5 3: CAPE 2108 to 2308C/precipitable water (see

Fig. 1, row C);
d i5 4: Normalized satellite growth rate fromGOES-16

(see Fig. 2).

For an example storm, let

d Max MESH 5 1.0 in.;
d Wet bulb 08C height 5 3000 m;
d ENI flash rate 5 40 flashes per minute;
d Effective bulk shear 5 40 kt;
d CAPE 2108 to 2308C 5 600 J kg21;
d Precipitable water 5 1.2 in.;
d Normalized satellite growth rate 5 3% min21.

In the numerator and the first term of the denominator:

P
4

i51

P(F
i
jC

yes
)5P(F

1
jC

yes
)P(F

2
jC

yes
)P(F

3
jC

yes
)

3 P(F
4
jC

yes
) .

d From Fig. 1, cell A2, a combination of Max MESH 5
1.0 and wet bulb 08C height5 3000 yieldsP(F1jCyes)5
0.002 089.

d From Fig. 1, cell B2, a combination of ENI flash rate5
40 and effective bulk shear 5 40 yields P(F1jCyes) 5
0.000 806.

d From Fig. 1, cell C2, a combination of CAPE 2108
to 2308C 5 600 and precipitable water 5 1.2 yields

P(F1jCyes) 5 0.003 785.
d From Fig. 2 (red line), normalized satellite growth

rate 5 3 yields P(F1jCyes) 5 0.010 978

After substitutions,

P
4

i51

P(F
i
jC

yes
)5 0:002 0893 0:000 8063 0:003 785

3 0:010 9785 6:9963 10211 .

In the second term of the denominator:

P
4

i51

P(F
i
jC

no
)5P(F

1
jC

no
)P(F

2
jC

no
)P(F

3
jC

no
)P(F

4
jC

no
) .

d From Fig. 1, cell A1, a combination of Max MESH 5
1.0 and wet bulb 08C height5 3000 yields P(F1jCno)5
0.000 267.

d From Fig. 1, cell B1, a combination of ENI flash rate5
40 and effective bulk shear 5 40 yields P(F1jCno) 5
0.000 208.

d From Fig. 1, cell C1, a combination of CAPE 2108
to 2308C 5 600 and precipitable water 5 1.2 yields

P(F1jCno) 5 0.001 348.
d From Fig. 2 (blue line), normalized satellite growth

rate 5 3 yields P(F1jCyes) 5 0.004 094.

After substitutions,

P
4

i51

P(F
i
jC

no
)5 0:000 2673 0:000 2083 0:001 348

3 0:004 0945 3:0653 10213 .
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Substituting back into (B1):

P(C
yes
jF)5

P(C
yes
)P

N

i51

P(F
i
jC

yes
)

P(C
yes
)P

N

i51

P(F
i
jC

yes
)1P(C

no
)P

N

i51

P(F
i
jC

no
)

,

P(C
yes
jF)5 0:03(6:9963 10211)

0:03(6:9963 10211)1 0:97(3:0653 10213)
,

P(C
yes
jF)5 0:8759.

The probability of severe hail for this storm is approxi-

mately 88%.
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