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ABSTRACT

The empirical Probability of Severe (ProbSevere) model, developed by the National Oceanic and Atmo-

sphericAdministration (NOAA) and theCooperative Institute forMeteorological Satellite Studies (CIMSS),

automatically extracts information related to thunderstorm development from several data sources to pro-

duce timely, short-term, statistical forecasts of thunderstorm intensity. More specifically, ProbSevere utilizes

short-term numerical weather prediction guidance (NWP), geostationary satellite, ground-based radar, and

ground-based lightning data to determine the probability that convective storm cells will produce severe

weather up to 90min in the future. ProbSevere guidance, which updates approximately every 2min, is

available to National Weather Service (NWS) Weather Forecast Offices with very short latency. This paper

focuses on the integration of ground-based lightning detection data into ProbSevere. In addition, a thorough

validation analysis is presented. The validation analysis demonstrates that ProbSevere has slightly less skill

compared to NWS severe weather warnings, but can offer greater lead time to initial hazards. Feedback from

NWS users has been highly favorable, with most forecasters responding that ProbSevere increases confidence

and lead time in numerous warning situations.

1. Introduction

Issuing severe weather warnings is a critical function of

the National Weather Service (NWS). Real-time meteo-

rological datasets are becoming more advanced and so-

phisticated, with greater spatial resolution, frequency, and

content. The combination of high-resolution numerical

weather prediction (NWP) models [e.g., High Resolution

Rapid Refresh (HRRR); Benjamin et al. (2011)], next-

generation Geostationary Observational Environmental

Satellites (e.g., GOES-16; Schmit et al. 2015), spaceborne

lightning mappers [e.g., Geostationary Lightning Mapper

(GLM);Goodmanet al. (2013)], terrestrial lightning arrays

[e.g., EarthNetworks Total LightningNetwork (ENTLN),

Vaisala National Lightning Detection Network (NLDN)],

Multi-Radar Multi-Sensor products (MRMS; Smith et al.

2016), and other datasets means that forecasters have

routine access to very large volumes of data. For short-fuse

operational products such as severe thunderstorm and

tornado warnings, forecasters must quickly analyze rele-

vant data, identify threats, and issue warnings to the public

in a timely manner. Given the very large data volume

applicable to severe weather warning operations, the

manual analysis techniques typically employed in opera-

tions will not always extract all of the pertinent in-

formation, especially when numerous storms are present.

The NWS is exploring a new paradigm to its advisory/

watch/warning products, whereby severe weather watches

and warnings (as well as other hazards) may be dissemi-

nated in a grid-based, frequently updating, probabilistic

manner. This paradigm is part of NOAA’s Forecasting a

Continuum of Environmental Threats (FACETs) effort

(C. D. Karstens et al. 2018, unpublished manuscript;

Rothfusz et al. 2014). Because the probabilistic FACETsCorresponding author: John L. Cintineo, jlc248@gmail.com
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paradigm is starkly different from the current binary yes/no

warning paradigm, this creates the need for probabilistic

guidance to communicate a level of certainty of potential

threats.

In response to the ‘‘big data’’ challenge, researchers at

theNOAA/National Environmental Satellite, Data, and

Information Service (NESDIS) and the Cooperative

Institute of Meteorological Satellite Studies at the

University of Wisconsin–Madison (UW-CIMSS) have

developed the NOAA/CIMSS Probability of Severe

(ProbSevere) model [Cintineo et al. (2013) and Cintineo

et al. (2014), hereafter C13 and C14, respectively].

ProbSevere is a naïve Bayesian classifier that utilizes

multiple meteorological datasets to compute the prob-

ability that any developing or present thunderstorm will

produce severe weather in the near future (0–90min),

anywhere in the continental United States (CONUS).

Using the NWS definition, severe weather is character-

ized by at least one of the following conditions: one or

more hailstones with a diameter of at least 1 in., a con-

vective wind gust measuring at least 50 kt (where 1 kt 5
0.51ms21) or producing significant damage to structures

or trees, or the presence of a tornado (NOAA/NWS

2017). The goals of this paper are to describe the in-

tegration of ground-based lightning measurements into

ProbSevere, present a rigorous validation analysis, and

highlight the efforts to assess the performance of Prob-

Severe, with lightning, in operational settings.

2. ProbSevere background

a. ProbSevere overview

Data mining meteorological observations and model

output within an object-based framework is not a

new concept (e.g., Lakshmanan and Smith 2009). For

instance, one can find recent data-driven work in the

atmospheric sciences for severe wind prediction

(Lagerquist et al. 2017), flash flooding (Gourley et al.

2017), offshore precipitation estimation (Veillette et al.

2016), hail prediction with storm-scale NWP models

(Gagne et al. 2015), and severe weather climatological

metrics (Smith et al. 2017), all of which use some ele-

ments of data mining, machine learning, and image

processing while integrating multiple sources of obser-

vations and NWP model output. ProbSevere tackles the

joint prediction of severe hail, wind, and tornadoes,

uniquely integrating derived satellite observations with

lightning, radar, and NWP output.

ProbSevere uses the naïve Bayesian classifier to de-

termine the probability that a given thunderstorm is a

member of the ‘‘severe’’ class (i.e., amember of the class of

storms that will produce severe weather in the short term).

C14 gave an overview of the naïve Bayesian classifier and

constituent model predictors from satellite, radar, and

NWP sources. One unique aspect of ProbSevere is its

multisensor storm identification and tracking capability.

ProbSevere identifies and tracks clouds on a derived sat-

ellite field (C14; see Sieglaff et al. 2013 for tracking details)

and on a derived radar field [C14; see Lakshmanan et al.

(2007a,b) for details on the Warning Decision Support

System–Integrated Information (WDSS-II)]. ProbSevere

is designed to take advantage of geostationary satellite

metrics that often effectively depict the evolution of a cu-

mulus cloud into a cumulonimbus cloud as well as radar

metrics that are most relevant after the cumulonimbus

stage is reached. The combined use of satellite and radar

metrics, which are time lagged, is achieved through the

association of satellite cloud objects with radar objects,

after the satellite data are corrected for parallax effects.1 In

this way, ProbSevere attempts to represent a more com-

plete picture of a thunderstorm’s evolution, which better

informs its future severe potential. Predictors in the clas-

sifier must have severe and nonsevere distributions with

sufficiently different means and/or standard deviations in

order to add skill. Please seeC13 andC14 for an analysis of

the separation of classes for the following predictors.

b. Predictors

ProbSevere incorporates five predictors (Table 1);

one of which is derived from NOAA’s operational

Rapid Refresh NWPmodel (RAP). The RAP predictor

combines the most-unstable convective available po-

tential energy (MUCAPE) and the effective bulk shear

(EBS; Thompson et al. 2007) into a two-dimensional

(2D) predictor. Two of the predictors are derived from

Geostationary Operational Environmental Satellite

(GOES) data. From GOES, the rate of change in the

11-mm top-of-the-troposphere emissivity D«tot (C13,

C14, Pavolonis 2010a) and the cloud-top glaciation rate

Dice (C13, C14, Pavolonis 2010b) are utilized. In addi-

tion, the maximum expected size of hail (MESH; Witt

et al. 1998) from the MRMS product suite is a predictor.

Finally, the total lightning flash rate, the integration of

which is detailed in section 3, is utilized.

The D«tot is often referred to as the normalized ver-

tical growth rate and is analogous to decreases in the

minimum observed 11-mm brightness temperature in

the cloud object. The 11-mm top-of-the-troposphere

emissivity is the emissivity a cloud would have if it

were at the tropopause (Pavolonis 2010a). Using the

emissivity instead of brightness temperature helps

1 Parallax correction is performed using an assumption of a

constant cloud height of 9 km.
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reduce the impact of surface features being misconstrued

as clouds and is less sensitive to the depth of the tropo-

sphere compared to the brightness temperature. The Dice
uses the cloud-top phase field to capture how quickly cloud

tops transition from liquid water to ice. Severe storms tend to

exhibit stronger image-to-image increases in these satellite

fields than nonsevere storms (C13). Satellite growth observ-

able from geostationary imagery has long aided in thunder-

storm intensity diagnoses (e.g., Adler and Fenn 1979, 1981;

Reynolds 1980;Adler et al. 1985;Roberts andRutledge 2003;

Mecikalski and Bedka 2006; Sieglaff et al. 2011). ProbSevere

uses themaximum image-to-image satellite growth rate in the

latest 2.5-h window, that is, the greatest trends computed

from either GOES-East or GOES-West observations.

The environmental shear and instability are generally

good first-order fields for determining the severe potential

in a given region. ProbSevere uses MUCAPE to better

depict elevated hail and wind threats, compared to surface-

based or mixed-layer CAPE. The EBS is used to better

discern environmental shear for storms ranging from shal-

low to very tall, compared to 0–6-kmbulk shear (Thompson

et al. 2007). C14 explains how the a priori probability in the

naïve Bayesian equation, or ‘‘first guess’’ probability, is

derived as a function of these two NWP predictors, which

are also spatially and temporally smoothed to mitigate

phase and placement errors in the RAP.

The MRMSMESH is very useful for identifying storms

capable of producing hail (e.g., Cintineo et al. 2012). It is

empirically derived from a thermally weighted integration

of the radar reflectivity from themelting layer to the storm

top. MESH can also be considered a good proxy for up-

draft strength in a storm, which is related to storm severity.

Thus, the MESH is a good predictor for damaging wind

threats in certain situations, wherein greater MESH may

be indicative of precipitation loading.

Note that other reflectivity-derived fields are not used as

predictors. The ‘‘naïve’’ part of the Bayesian classifier is

due to the fact that it assumes independence of predictors,

although it has been shown that a naïveBayesian approach
can still be skillful even when the independence assump-

tion is clearly violated (e.g., Domingos and Pazzani 1997;

Hand and Yu 2001; Kossin and Sitkowski 2009; Heidinger

et al. 2012; Pavolonis et al. 2015). The MESH and other

MRMS fields (e.g., vertically integrated liquid, reflectivity

at2208C, height of the 50-dBZ echo above 08C) are highly
correlated. Inclusion of several such predictors may

create a probabilistic product that is poorly calibrated.

While the ProbSevere predictors are not completely in-

dependent, they are derived from several independent

measurement platforms (weather radar, satellite imagers,

and lightning networks).

The total lightning flash rate (FR) in a storm is simply

the sum of intra/intercloud flashes (IC) and the number of

cloud-to-ground flashes (CG) in a storm per minute, with

units of flashes perminute. The FR is directly related to ice

production aloft and charge separation in the storm and

can help infer updraft intensity (e.g., Deierling and

Petersen 2008; Steiger et al. 2007). Flash data from

ENTLN are proprietary and provided through a contract

between NOAA and Earth Networks. Flash data are de-

livered in a comma-separated values format, with in-

formation provided for each flash including time, location,

amplitude, polarity, height, and type of flash (IC or CG).

The ProbSevere system currently uses a WDSS-II algo-

rithm (w2ltg) to take the flash data and create a lightning

density field with 2-min temporal resolution and 0.018 3
0.018 spatial resolution. Flashes are smoothedwith a radius

of influence of 3km. The total lightning flash density field

has units of flashes perminute per square kilometer.When

values from the lightning density field are aggregated

inside a storm object, the FR is rounded to the nearest

whole flash. Section 3 describes how the FR is in-

corporated into ProbSevere.

The ProbSevere model computes and updates prob-

abilities for all CONUS storms at the MRMS frequency

of 2min, using the most recent MRMS, ENTLN-

derived, RAP-derived, and GOES-derived data avail-

able. Model output can be displayed in the Advanced

Weather Interactive Processing System II (AWIPS-II),

which the NWS uses to view meteorological data and

issue products such as severe weather warnings. Figure 1

shows an example of ProbSevere output in AWIPS-II,

with polygons contoured around storms in the shaded

MRMS MergedReflectivity field, colored by the final

(i.e., posterior) probability of severe. With sampling

enabled, forecasters can hover their mouse cursor over

an object and get a text display of the probability of

severe weather along with the constituent predictors.

The text display helps users interpret changes in prob-

ability over time.

TABLE 1. ProbSevere model predictors for 2014–16. This study

reprocessed 2014 days with the 2016 model.

Year Predictor name Source

2014–15 MUCAPE vs EBS RAP

Max expected size of hail (MESH) MRMS

Max rate of change in the «tot in

2.5-h window (D«tot)
GOES

Max rate of change in the cloud-top

ice fraction in 2.5-h window (Dice)
GOES

2016 MUCAPE vs EBS RAP

MESH MRMS

D«tot GOES

Dice GOES

Total lightning flash rate vs EBS ENTLN and RAP
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3. Total lightning incorporation

Prior to 2016, ProbSevere used the radar, satellite, and

NWP predictors described previously (Table 1). The

availability of ENTLN data to NOAA made it possible

to test the potential benefit of using total lightning data

in ProbSevere and gain insight into the potential benefits

of spaceborne lightning measurements available in the

GOES-R satellite series era (Goodman et al. 2013).

When testing the FR as a univariate predictor in Prob-

Severe, it was found that it contributed to a large in-

crease in the probability of detection and false alarm

ratio at greater forecast probability thresholds (e.g.,

80%–90%). The flash rate was therefore coupled with

the EBS, which is closely tied to storm organization. The

coupling of FR and EBS is somewhat analogous to using

the MUCAPE/EBS 2D predictor for the first-guess

probability (see C14), except that the flash rate is an

observed quantity that is a realization of convective

potential instability, which only yields a theoretical

maximum updraft velocity.

With respect to total lightning incorporation, the se-

vere and nonsevere storm classes for all of the predictors

were extracted from 88 days in May, June, July, and

August of 2015 (approximately the first 20–25 days of

eachmonth). Severe hail, wind, and tornado preliminary

local storm reports (LSRs) from NOAA’s Storm

Prediction Center (SPC 2016) were used to determine

which storms were severe in an automatic fashion. Each

LSR was assigned to the storm with the spatially closest

centroid within 2min of the report time. Nonsevere

storms were defined as radar-identified objects that ex-

hibited at least 40 dBZ at the 2108C isotherm at some

point in their life cycle [convective initiation was defined

in Kain et al. (2013) using this criterion], were tracked

for at least 30min, and were never associated with a

severe LSR.

The joint distributions of FR/EBS for nonsevere and

severe storms are shown in Figs. 2 and 3, respectively.

These distributions were smoothed with 2D kernel

density estimation, using optimally chosen bandwidths

[i.e., bandwidths that smooth the sample distribution

such that the mean integrated squared error is mini-

mized; see Mielniczuk (1997)]. The shaded values and

white contours denote the frequency of storms as a

fraction of the nonsevere or severe storm population.

Thus, the integration over each grid is 1. Note how the

distribution for the severe class is more disperse and

contains a more pronounced tail of data in the flash rate

dimension. The gridded data in Fig. 4 show the ratio of

the severe and nonsevere distributions. Ratios greater

than 1 (see the white contours) indicate that the FR/EBS

predictor favors the severe class (i.e., the larger the ratio,

FIG. 1. NOAA/CIMSS ProbSevere model output visualized in AWIPS-II (image time is 2338 UTC; ProbSevere 5
85%). Polygons represent storms identified and tracked by ProbSevere, colored by the computed probability of severe

weather in the next 90min. Pink shades denote probabilities in the 75%–100% range, whereas gray-to-purple shades

denote probabilities in the 0%–15% range.When sampling is enabled in AWIPS-II, forecasters can scroll over polygons

with their mouse cursors to see readouts of predictor values and the probability of severe weather. MRMS

MergedReflectivity is shaded from light blue (;15–20 dBZ) to green (;25–35 dBZ) to yellow and orange (;35–45 dBZ)

to red (;50–55 dBZ) and then to white and magenta (601 dBZ). This storm west of DesMoines, IA, on the evening of

30March 2016 was cause for a severe thunderstormwarning by the NWS 20min after this image time (2358 UTC). Five

minutes after the warning was issued, multiple reports of 1-in.-diameter hail were recorded (at 0003 UTC).
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the more the severe class is favored). For low-EBS

storms (e.g., 10 kt), a greater flash rate is required (;40

flashes per minute) to add to the posterior probability,

whereas for storms residing in relatively high-EBS en-

vironments (e.g., 40 kt), a relatively lesser flash rate

(;10 flashes per minute) is necessary to increase the

FIG. 2. The joint distribution, or frequency density, of total lightning FR and EBS for the

nonsevere storms class. Shaded values and white contours denote the frequency of storms as

a fraction of all nonsevere storms.

FIG. 3. As in Fig. 2, but for the severe storm class.
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final probability. Both examples (10 kt, 40 flashes per

minute; 40 kt, 10 flashes per minute) yield a ratio of

approximately 1, which does not modify the a priori

probability. The joint distributions of severe and non-

severe FR/EBS express a spatial character similar to the

MUCAPE/EBS joint predictor for the a priori in

ProbSevere (see Fig. 2 in C14) whereby moderate quan-

tities in each predictor make severe storms more probable

than a large value in one and a small value in the other.

Several aspects of total lightning interpretation

in ProbSevere require additional consideration. First,

supercell thunderstorms exhibit different FR patterns

than multicells, single cells, or squall lines (e.g., Miller

et al. 2015), suggesting that total lightning utility is tied

to storm morphology. The FR/EBS distributions pre-

sented in this section do not discriminate by stormmode.

Parsing the FR/EBS predictor (and other predictors)

by a storm’s general morphology can add value to users’

interpretation of changes in FR in ProbSevere and has

the potential to improve the model quantitatively.

The utility of total lightning FR is also strongly de-

pendent on the accuracy of the storm object identification

and tracking methodology. Abrupt changes in the defini-

tion of an object boundary may artificially produce a large

increase or decrease in the FR, which will affect the final

probability. For example, many quasi-linear convective

system (QLCS) storms are prolific lightning producers and

sometimes suffer from abrupt object area changes as a

result of segments of the QLCS merging or splitting, or

simply because local maxima of composite reflectivity

(which the identification algorithm relies on to create ob-

jects) can be difficult to discern from scan to scan. In this

case, a large increase in area will correspond to a large

increase in FR, which is unrelated to the storm’s meteo-

rology, yet still increases the final ProbSevere value. Thus,

it is important that users visually inspect storms’ evolution

for abrupt object changes and for aid in storm mode di-

agnosis, which will allow for anticipation of possible in-

accuratemodel forecasts.Model validation based on storm

morphology and the use of spatial metrics to mitigate

nonmeteorological changes in the ProbSevere values are

both planned research activities.

4. Validation

a. Methodology

1) PROBABILISTIC VALIDATION

The skill, lead time, and reliability (i.e., forecast

probability calibration) of ProbSevere were assessed

using an independent dataset of 119 days from 2014 and

2016 (Table 2), comprising nearly 3200 severe storms

FIG. 4. The joint distribution of the total lightning FR andEBS for the severe class divided by

the same joint distribution for the nonsevere class. Regions in the data space greater than 20

were assigned a value of 20 because of sparse sampling.
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and approximately 61 500 nonsevere storms. The skill of

ProbSevere was measured with traditional metrics such

as the probability of detection (POD; i.e., the ratio of

correctly forecast events to all events), false alarm ratio

(FAR; i.e., the ratio of false alarms to the sum of false

alarms and hits), and critical success index (CSI; i.e., the

ratio of hits to the sum of hits, misses, and false alarms)

as a function of the posterior probability. CSI is a no-

tably useful metric for rare-event forecasting (Wilks

2006). In the validation analysis, an event was defined

as a thunderstorm (i.e., an identified object with a flash

rate $ 2 flashes per minute at any point in its lifetime)

meeting a certain probability threshold. In order for a

storm to be severe, it must have been associated with at

least one LSR of severe hail, severe wind, or a tornado at

some point in its lifetime. An event was correctly fore-

cast, or considered a ‘‘hit,’’ if the given probability

threshold was first achieved for the storm at or prior to

the LSR time. An event was a ‘‘miss’’ if the given

probability threshold was first achieved after the LSR

time, or if the probability threshold was never met. A

‘‘false alarm’’ event occurred when a probability

threshold was met, but the storm was not associated

with a severe LSR within the next 90min. Thus, a storm

can at most have either one hit or miss or false alarm at

any given probability threshold. For example, a storm

with a maximum ProbSevere value of 70% prior to the

first LSR would count as hits at every probability

threshold# 70% andmisses at thresholds. 70%. There

would be no false alarms in this case. If the same storm

failed to produce an LSR, it would then have false

alarms at every probability threshold # 70%, with no

misses or hits.

2) NWS VERSUS PROBSEVERE VALIDATION

In addition to probabilistic validation of ProbSevere, a

comparison between ProbSevere andNWS severe weather

warnings was performed. For this study, NWS verification

practices were modified to enable a storm-by-storm

validation. Therefore, NWS skill presented herein is

unofficial. Manual analysis was used to identify coherent

storm objects in MRMS composite reflectivity imagery

over time, linking ProbSevere object IDs to individual

storms. Manual analysis was chosen over an automated

method to mitigate potential biases in automation and

to more accurately link ProbSevere IDs together. For

instance, a given storm could have multiple ProbSevere

IDs if there were automated tracking anomalies, in-

cluding splitting or merging storm cells and tracking

algorithm errors in assigning the correct object ID. The

manual analysis also associated storms with an initial

LSR time and an initial NWS warning issuance time, if

either occurred. NWS warnings without ProbSevere

objects present were also recorded and scored.

In this way, we can directly compare ProbSevere model

skill and lead time to the NWS for the initial LSR for se-

vere storms. An example of this process is illustrated in

Fig. 5. If an NWS severe thunderstorm or tornado warning

was present at or before the first LSR for a storm, it was

scored as one hit for the NWS, regardless of whether there

were multiple warnings issued for the storm in its life, or if

it produced multiple LSRs, or if the LSRs resided in the

polygon (provided that they were easily attributable to the

storm). If there were one or more LSRs produced by a

storm that was never warned, or it was first warned after

the initial LSR, it was scored as onemiss only. If therewere

one or more warnings issued by the NWS for a storm that

never produced LSRs, it was scored as one false alarm

only. Thus, awarned stormcan result in one hit or one false

alarm, while an initial LSR can either validate a warned

storm or cause the storm to be a miss. The storm in Fig. 5

was counted as one hit for ProbSevere at the 90%

threshold with a lead time of 50min to the initial LSR (the

hail report). For the NWS, the storm would also be scored

TABLE 2. A list of the days for the validation of the ProbSevere model, independent from the days used to create the training dataset.

Year Month Day

2014 May 7, 8, 15, 17, 18, 19, 20, 21

Jun 4, 7, 17

Jul 17, 18, 21, 22, 25, 26, 27

2016 Mar 14, 15, 16

Apr 6, 10, 11, 12, 13, 14, 15, 16

May 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30

Jun 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24

Jul 1, 2, 3, 4, 5, 6

Aug 1, 18, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31

Sep 1, 2, 3, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30

Oct 1, 2, 3, 4, 5, 6

Nov 2, 4, 5, 18, 28, 29, 30

Dec 17, 25, 28
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as one hit with a lead time of 50min to the initial LSR as

well, based on the first warning issuance time at 0012

UTC and the first LSR time of 0102 UTC. The three

subsequentNWSwarnings andwind report are null points,

since all occurred after the initial warning or LSR. Using

official NWS scoring practices, the third NWS warning

would be considered a ‘‘verified warning,’’ whereas the

other three warnings would be false alarms. Both reports

would be considered ‘‘warned events,’’ with a lead time of

8min to the hail report and 21min to the wind report. The

modifications made to traditional verification practices

help mitigate the effects of ProbSevere having a longer

valid time and no explicit warning area for its probabilistic

guidance compared to NWS warnings, creating a better

‘‘apples to apples’’ comparison.

Nonsevere storms were automatically extracted by

identifying storms that were tracked by ProbSevere for

at least 30min and were clearly not associated with any

LSRs during their history. The 30-min criterion was

subjectively chosen because of some limitations in the

automated tracking. For instance, one coherent storm

may, for a number of reasons, change its object ID on

several occasions over its lifetime (e.g., mergers, splits).

If every object ID from that storm were counted as a

false alarm, the FAR could be artificially high. Thus,

only more sustained storms were counted as nonsevere,

helping tomitigate (but not eliminate) this problem. The

ratio of severe to nonsevere storms is approximately 5%

in this study, which is comparable to the U.S. climatol-

ogy of severe thunderstorm frequency [;5%–10%;

NOAA/NWS (2010); FEMA (2007)].

3) LOCAL STORM REPORTS

Because LSRs serve to validate both ProbSevere and

NWS warnings in this study, some limitations must be

acknowledged, which are listed below with references:

d a secular increase in reporting over time (Doswell

et al. 2005; Weiss et al. 2002);

d a dependence of report frequency on population

density and time of day (Trapp et al. 2006; Doswell

et al. 2005; Hales and Kelly 1985; Kelly et al. 1985);

FIG. 5. An example of how storm-by-storm validation is performed in this study. The

timeline for this example shows the following: A, ProbSevere object 5 94% valid at 0012

UTC; B, NWS warning valid 0012–0100 UTC; C, NWS warning valid 0035–0100 UTC; D,

NWS warning valid 0054–0145 UTC; E, 2.5-in.-hail report at 0102 UTC; F, 60 mi h21 wind

report at 0115 UTC; and G, NWS warning valid 0120–0200 UTC. The hail report verifies

the ProbSevere object at the 90% threshold and verifies the set of four NWS warnings for

this storm. The wind report is not considered, since it occurred after the hail report. This

methodology yields one hit only for the NWS (E). This differs from official NWS verifi-

cation methods, which would yield one verified warning (D), two warned events (E and F),

and three false alarm warnings (B, C, and G).
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d overestimated wind speeds by observers (Doswell

et al. 2005);
d quantized hail size and nonstandard hail-size report-

ing (Schaefer et al. 2004);
d demographic factors such as urbanization, highway

distribution, and education level of reporters (Kelly

et al. 1985);
d underreporting of ‘‘lesser’’ hazards (Morgan and

Summers 1982; e.g., lack of hail reports with a tornadic

storm); and
d inconsistent verification practices among NWS offices

(Doswell et al. 2005).

Furthermore, limitations should be mitigated by the very

large number of storms in the dataset and by negligible

secular trends over the short verification duration. Readers

are reminded that all NWS statistics presented here are

unofficial. This is due to 1) this study’s use of preliminary

LSRs from the SPC instead of the vetted official reports

found in the Storm Data publication from the National

Centers for Environmental Information (NCEI) and 2) the

verification rules used for NWS warnings in this study (de-

scribed in section 4a) are designed to facilitate storm-by-

storm validation in concert with ProbSevere and therefore

differ substantially from official NWS verification rules.

b. Aggregated validation

As a function of the ProbSevere forecast probability

threshold, a maximum CSI value of 0.27 is achieved at

the ProbSevere 90% probability threshold (Fig. 6a). CSI

steadily increases to 80%, and then flattens somewhat in the

80%–90% range. The reliability diagram (Fig. 6b) shows

good correspondence between the forecast probability and

the occurrence of an LSR event, although some over-

forecasting is evident at probability thresholds of 40% and

greater. The inset in Fig. 6b demonstrates good sharpness in

the forecasts (note that the y axis is log scaled). Figure 7

shows ProbSevere (with and without the FR/EBS pre-

dictor) and NWS skill (POD, FAR, and CSI) and median

lead time to the initial LSR for a storm. Note that the 80%

probability threshold is shownhere because the ProbSevere

CSI was only slightly less compared to the 90% threshold,

but the median lead time increased by 5min. We see that

ProbSevere has a smaller PODand greater FARcompared

to NWS and a CSI of 0.27 compared to 0.35 for the NWS

results. However, the median lead time of ProbSevere is

35min compared to 17min for the NWS version. Figure 7

also demonstrates that the inclusion of total lightning im-

proves ProbSevere (0.1 increase in POD, 0.01 increase in

CSI, and the median lead time to the first LSR increases by

5min). Recall that a ‘‘valid window’’ of 90min was chosen

for ProbSevere forecasts. Given shortcomings in storm re-

ports as discussed previously, a 90-min window is more in-

clusive than shorter windows for severe storms thatmay not

have LSRs within 60min because of nonmeteorological

reasons (e.g., low population density, storms occurring at

night). Using a 60-min valid window did not substantially

diminish the skill (CSI decreased by #0.008 and me-

dian lead time decreased by #5min at all probability

thresholds . 10%, compared to a 90-min window).

c. Quasi-seasonal validation

In a day-by-day analysis of ProbSevere (forecast

probability threshold of 80%) andNWS skill (Fig. 8), we

FIG. 6. (left) ProbSevere skill scores for the entire validation as a function of forecast probability threshold on a storm-by-storm basis

and (right) a reliability diagram of ProbSevere skill, computed for the aggregation of every 2-min ProbSevere probability forecast.

Note that the y axis of the inset graph in (b) is log scaled.

FEBRUARY 2018 C INT I NEO ET AL . 339



see that ProbSevere often underperforms the NWS,

which is expected given the value of human expertise,

but on some days ProbSevere can actually be more

skillful than NWS warnings (e.g., 30 May, 12 June,

21 June, and 22 August 2016). In general, days where

ProbSevere performs well with respect to the NWS tend

to have storms that produced hail and wind reports,

whereas days where ProbSevere skill is less than that of

NWS tend to have storms that produce straight-line

winds and/or weak tornadoes (i.e., no hail reports). For

example, the dates of 6 April, 20 August, 18 November,

and 28 November 2016 contained numerous linear or

QLCS storms, which exhibited smaller MESH values

and flash rates compared to cellular severe storms on

other days. Within the Hazardous Weather Test Bed

(HWT) and NWS Operations Proving Ground (OPG)

experiments (Gravelle 2017), forecasters also noted that

ProbSevere was more skilled at forecasting storms that

only produced severe hail or produced severe hail along

with severe straight-line winds or tornadoes. As alluded

to in section 3, this anecdotal evidence suggests the need

for additional research addressing ProbSevere perfor-

mance with different storm modes. Thompson et al.

(2012) show that while EBS is a helpful predictor for

severe versus nonsevere, it cannot (and thus ProbSevere

cannot) readily discern storm mode. In the meantime,

users of ProbSevere should be aware that these ca-

veats exist and should therefore calibrate expectations

accordingly.

d. Regional validation

A geographical assessment of ProbSevere was also

performed on the 119 days noted in Table 2. Storms

were assigned to NWSWeather Forecast Office (WFO)

county warning areas (CWAs) based on their mean

lifetime centroid latitudes and longitudes. To diminish

the effects of a small sample size for some WFOs, skill

statistics were aggregated for each CWA by including

the CWAs of neighboring WFOs, that is, spatially ad-

jacent CWAs. For instance, the skill calculated for the

Nashville, Tennessee, WFO would aggregate storms for

seven different CWAs: Nashville Tennessee; Knoxville,

Tennessee; Huntsville, Alabama; Memphis, Tennessee;

Paducah, Kentucky; Louisville, Kentucky; and Jackson,

Kentucky. The aggregation procedure was repeated for

eachNWSWFO in the contiguousUnited States, except

Key West, Florida, which was excluded from the anal-

ysis because no warnings were issued for the dates

considered.

The CWA analysis shows that the probability

threshold associated with the best CSI is a function of

region (see Fig. 9). For instance, the most skillful prob-

ability threshold in theOhio valley andMidwest is 60%–

80%, depending on NWS CWA, while the most skillful

threshold for the Great Plains is generally 90%. The

southeast United States has maximum CSI scores

FIG. 7. ProbSevere, ProbSevere without the total lightning/EBS

predictor, and NWS skill scores and median lead time to initial

LSR. The ProbSeveremetrics are measured from the 80% forecast

probability threshold.

FIG. 8. A time series of ProbSevere CSI at the 80% forecast probability threshold andNWS

CSI to initial LSRs (lines) and the number of severe storms analyzed on each day (bars).

The time series covers a portion of the annual cycle for 2016 only. Please see Table 2 for

a complete list of days in the validation.
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generally achieved with the 60%–70% probability

thresholds, ranging from 0.15 to 0.30. The Gulf Coast

and Northeast U.S. regions have maximum CSI values

of 0.1–0.25. The model tends to suffer from a large FAR

at most thresholds in the Gulf Coast region, while suf-

fering from a lower POD in the Northeast (not shown).

The western United States (i.e., west of the Rocky

Mountains) also shows diminished CSI compared to the

plains and Midwest, which may in part be due to sam-

pling and possibly also due to other factors such as in-

creased radar blockage, a relatively reduced lightning

detection efficiency, difficulty in obtaining severe re-

ports, and fewer supercell and convective-line storms in

the region (Kolodziej et al. 2011). Readers should bear

in mind that skill scores for the NWS are unofficial and

hits are only counted for the initial LSR.

e. ENTLN influence on validation

There is much recent research showing that ENTLN

has spatially and seasonally heterogeneous detection

efficiency (DE) in North America when compared to

the Lightning Imaging Sensor (LIS), a space-based op-

tical detector similar to theGLM (e.g., Bitzer et al. 2016;

Rudlosky 2015; Thompson et al. 2014). Furthermore,

ENTLNDE across the CONUS has increased over time

(Bitzer et al. 2016), complicating validation statistics.

Thompson et al. (2014) found that ENTLN had the

greatest number of flashes coincident with LIS (80%–

90%) in a semicircle that extended from central Okla-

homa, through east Texas, along the northern Gulf of

Mexico, across southern Florida, and along the U.S.

Southeast coast (their Fig. 5). This greater DE along the

Gulf Coast and the Southeast United States is one pos-

sible explanation for greater ProbSevere FAR in the

region. Surrounding regions (i.e., Arizona, NewMexico,

west Texas, inland parts of the U.S. Southeast) had be-

tween 40% and 80%DE. Rudlosky (2015) showed large

daily variability of ENTLNDE in North America, along

with seasonal decreases in 30-day average DE from

March through September of 80%–40% in 2011, 80%–

50% in 2012, and 80%–60% in 2013 (his Fig. 2).

Rudlosky (2015) also noted that this could be a result

of a number of factors, including ENTLN sensor

placement and limited LIS sampling.

Recall that the total lightning predictor in ProbSevere

was trained using storms across the CONUS from May

FIG. 9. ProbSevere model CSI by NWS region (see text for details) for the (a) 60%, (b) 70%, (c) 80%, and

(d) 90% forecast probability thresholds. Dark gray regions are excluded because the sample size is too small. Please

see the following link for more interactive maps detailing specific information such as POD, FAR, CSI, median

lead time, number of storms, NWS offices included in the aggregation, and NWS skill (http://cimss.ssec.wisc.edu/

severe_conv/training/validation.html).
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through August 2015. Training did not take into account

the disparity in DE both regionally and seasonally.

While ENTLN DE may be improving as time goes on

(e.g., Bitzer et al. 2016), these heterogeneities un-

derscore the need for renewed training of this predictor

in ProbSevere every few years, utilizing the DE as a

function of location and time. The GLM is expected to

have a much more uniform and potentially greater DE

across the CONUS, though the instrument will have

limited spatial resolution (8 km at nadir) and will not be

able to distinguish between IC and CG. Thus, terrestrial

lightning networks and space-based sensors may be used

together for improved severe hazard prediction.

5. User feedback

ProbSevere has been evaluated in real time by over 60

NWS and broadcast meteorologists at NOAA’s HWT

in Norman, Oklahoma, during the spring seasons of

2014, 2015, and 2016. Overall, the feedback was

highly favorable, as demonstrated by participant blog

posts (Satellite Proving Ground at the Hazardous

Weather Testbed 2016) and forecaster survey responses.

Forecasters answered numerous questions regarding

ProbSevere, with the results of three shown in Fig. 10.

Over these three evaluation years, approximately 75%–

80% of forecasters thought ProbSevere helped increase

confidence in issuing (or not issuing) severe weather

warnings, 50%–58% responded that ProbSevere in-

creased lead time to severe hazards for their warnings,

and 99% of forecasters would use ProbSevere during

warning operations. With total lightning included in

ProbSevere in 2016, forecasters gave the highest levels

of favorable responses.

A wider evaluation of ProbSevere was performed

from the spring through fall of 2016, with 52NWSWFOs

participating, 37 from the Central Region (CR) and 15

from the Eastern Region (ER). The ER/CR evaluation

was conducted as an extension of the NWS OPG

(Gravelle 2017). With 52 offices participating, it is likely

that hundreds of NWS forecasters were able to use

ProbSevere for multiple severe events. At the end of the

evaluation period, the majority of forecasters that re-

sponded to questions indicated that ProbSevere model

output was useful in providing confidence for warning

decision-making and that they would use ProbSevere

guidance again for upcoming convective events (Table 3).

An additional 25 NWS forecasters served as the ‘‘point of

contact’’ (POC) for their WFO and responded to a sepa-

rate survey. These forecasters often (but not exclusively)

held the managerial position of science operations officer

(SOO). Based on the responses from these 25 POCs,

ProbSevere aided in the warning decision process at least

500 times during the experiment [Table 4; Gravelle

(2017)]. The feedback from the NWS OPG ER/CR eval-

uation corroborates the HWT forecaster feedback from

2014 to 2016: that ProbSevere contributes to forecaster

confidence and potential lead time on severe weather

warnings in many situations.

6. Summary

The NOAA/CIMSS ProbSevere model fuses data

from the Rapid Refresh NWP model, geostationary

weather satellites (GOES), the NWS weather radar

network (MRMS), and, most recently, ground-based

lightning measurements (from ENTLN) to determine

FIG. 10. Forecaster survey results for three questions, pertaining

to the ProbSevere model, during the HWT from 2014 to 2016.

Question 1 (Q1): In general, did the NOAA/CIMSS ProbSevere

model output help increase your confidence in issuing severe

thunderstorm (tornado) warnings? Q2: In general, did the NOAA/

CIMSS ProbSevere model output help increase the lead time in

which you were able to issue severe thunderstorm (tornado)

warnings? Q3: Would you use the NOAA/CIMSS ProbSevere

model output during warning operations at yourWFO if available?

TABLE 3. Mean forecaster responses to questions following a 6-month-long experiment conducted by the NWS OPG. Forecasters could

respond with a number from 1 to 10, with 1 being least useful or least likely and 10 being most useful or most likely.

Question Mean forecaster response

Q1: How useful did you find the ProbSevere Model for providing confidence in issuing

or not issuing convective warnings on thunderstorms?

7/10

Q2: How likely are you to use the ProbSevere Model for an upcoming convective event? 9/10
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the probability that a thunderstorm will produce severe

weather in the near term. Severe weather probabilities

are computed on a storm object basis using a naïve
Bayesian classifier. ProbSevere output has been exper-

imentally provided in real time to the NWS since 2014 to

aid in severe weather warning operations. Overall,

ProbSevere has been shown to increase forecaster con-

fidence and extend lead time to severe weather hazards.

ProbSevere aids severe weather warning operations by

distilling gigabytes of data into kilobytes of useful in-

formation directly relevant to decision-making.

The inclusion of a bivariate total lightning flash rate

and effective bulk shear predictor improved the accu-

racy and lead time of ProbSevere (relative to the first

report of severe weather). A robust validation analysis

revealed that ProbSevere performance varies over the

CONUS, performing best in the Ohio valley, Midwest

United States, andGreat Plains regions, and worst along

theGulf Coast, NewEngland, and the SouthwestUnited

States. A frequent piece of feedback from forecasters is

the request for probabilistic guidance based on hazard

type (tornado, hail, or wind). To this end, work is under

way in providing such guidance using the ProbSevere

framework (i.e., multiscale storm tracking, data mining,

naïve Bayesian classifier), but with different combina-

tions of meteorological predictors appropriate to each

hazard. This effort will result in more accurate and

better-calibrated guidance for the wind and tornado

hazards in particular. Work is also under way to retrain

ProbSevere with on-orbit GOES-16 data. With much

improved spatial, spectral, and temporal capabilities,

the GOES-16 Advanced Baseline Imager (ABI) should

help improve the accuracy and lead time of ProbSevere.

In addition, the GLM, which is available on the

GOES-R series of satellites, will allow for expanded use

of lightning-based predictors. Tools like ProbSevere,

which transform very large volumes of data into ac-

tionable information, enable users to better utilize ad-

vanced measurement and modeling capabilities without

being overwhelmed by their information volume.
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