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ABSTRACT

Geostationary satellites [e.g., the Geostationary Operational Environmental Satellite (GOES)] provide
high temporal resolution of cloud development and motion, which is essential to the study of many mesoscale
phenomena, including thunderstorms. Initial research on thunderstorm growth with geostationary imagery
focused on the mature stages of storm evolution, whereas more recent research on satellite-observed storm
growth has concentrated on convective initiation, often defined arbitrarily as the presence of a given radar
echo threshold. This paper seeks to link the temporal trends in robust GOES-derived cloud properties with
the future occurrence of severe-weather radar signatures during the development phase of thunderstorm
evolution, which includes convective initiation. Two classes of storms (severe and nonsevere) are identified
and tracked over time in satellite imagery, providing distributions of satellite growth rates for each class. The
relationship between the temporal trends in satellite-derived cloud properties and Next Generation Weather
Radar (NEXRAD)-derived storm attributes is used to show that this satellite-based approach can potentially
be used to extend severe-weather-warning lead times (with respect to radar-derived signatures), without
a substantial increase in false alarms. In addition, the effect of varying temporal sampling is investigated on
several storms during a period of GOES super-rapid-scan operations (SRSOR). It is found that, from a sat-
ellite perspective, storms evolve significantly on time scales shorter than the current GOES operational scan

2009

strategies.

1. Background

First launched in the late 1960s and 1970s, geosta-
tionary weather satellites [e.g., Applications Technol-
ogy Satellite (Suomi and Parent 1968), Synchronous
Meteorological Satellites (e.g., Legeckis 1975), and Geo-
stationary Operational Environmental Satellite (GOES;
Menzel and Purdom 1994)] provide frequent observations
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of clouds and weather systems. Convective clouds are
a subset of clouds that develop on short time scales (from
minutes to hours), and frequent observation is necessary
to understand the physical processes related to convec-
tive clouds as well as to forecast the development/growth
of such clouds. Purdom (1993) provides an overview of
the role of satellite observations from convective clouds
(to be specific, tornadic thunderstorms), including at-
mospheric temperature and moisture retrievals prior
to initiation, forcing mechanisms during initiation, and
satellite-inferred severity of mature thunderstorms.

In more specific terms, Adler and Fenn (1979a,b),
Adler et al. (1985), and Reynolds (1980) were some of
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the first to quantitatively use temporal trends of GOES
infrared (IR) brightness temperature (BT) to deter-
mine the intensity of thunderstorms. These studies fo-
cused on distinguishing severe thunderstorms from
nonsevere thunderstorms. Adler and Fenn (1979a,b) used
all severe reports for verification, whereas Reynolds
(1980) used only reports of severe hail for verification
since, as he argued, severe hail is most directly related
to updraft intensity and is least dependent upon bound-
ary layer processes. These studies focused on the growth
rate of thunderstorms that already had glaciated cloud
tops (as the infrared BTs were below the homogeneous
freezing point) and continued to grow to the tropopause
(and, in some cases, the lower stratosphere). These case
studies concluded that satellite-based growth rates of
thunderstorms (as determined by decreasing BTs and the
presence of very low BTs) could successfully be used to
distinguish severe thunderstorms from nonsevere thun-
derstorms. These techniques required very low BTs and,
in some cases, BTs that are consistent with the main
storm updraft overshooting the tropopause, however.
Given the level of maturity of thunderstorms for these
techniques to be successful and given the high spatial
and temporal resolutions of the current network of
Next Generation Weather Radar (NEXRAD; Crum
and Alberty 1993) over the continental United States
(CONUS), these techniques provide limited added value over
the CONUS (or anywhere else with good radar coverage).

Roberts and Rutledge (2003) more recently deter-
mined that the temporal trends of infrared BT from
GOES could provide lead times of up to 30 min for
storm initiation (production of 35-dBZ radar reflec-
tivity). Building upon these studies, others have de-
veloped convective initiation/cloud-top-cooling methods
to diagnose/nowcast thunderstorm initiation and inten-
sification (Mueller et al. 2003; Mecikalski and Bedka
2006; Vila et al. 2008; Zinner et al. 2008; Sieglaff et al.
2011). Mecikalski et al. (2011) investigated the temporal
trends of retrieved microphysical properties of growing
convective clouds, relating them to physical properties
of storm evolution prior to convective initiation. The
focus of these studies was primarily on convective ini-
tiation and/or existing storm intensification and not on
distinguishing between severe and nonsevere thunder-
storms during the initial growth stages.

With the deployment of the CONUS-wide NEXRAD
network in the early 1990s, radar-based storm observation
and warning processes were revolutionized (Polger et al.
1994). Polger et al. (1994) showed that critical success in-
dex scores for severe-thunderstorm- and tornado-warning
issuance nearly doubled relative to the pre-NEXRAD era.
The lead time of severe-thunderstorm/tornado warnings
averaged 14.9-17.3 min ahead of ground-truth observations,
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and tornado-warning lead time increased from 4.4 min
prior to NEXRAD implementation to 8.8min after
NEXRAD implementation. Without question, NEXRAD
observations are the critical tool for issuing severe-
thunderstorm and tornado warnings.

The previously discussed satellite-based convective-
initiation research indicates that robust satellite growth
signatures exist prior to severe-weather signatures in
NEXRAD observations. The goals of this paper are to
examine whether the temporal evolution of satellite-
based growth metrics from developing convective clouds
can be used to distinguish severe from nonsevere thun-
derstorms and to demonstrate that these satellite-based
growth signatures often occur prior to the appearance
of robust severe-weather signatures in NEXRAD, lead-
ing to the possibility of increasing severe-thunderstorm-
warning lead times even further. This investigation
should provide a solid basis for the utility of satellite-
observed growth rates upon entering an era of improved
geostationary spatiotemporal resolution (~2km in the
IR; ~5min over CONUS), beginning with the upcom-
ing launch of GOES-R (Schmit et al. 2005). The orga-
nization of the remaining sections in this paper is as
follows: section 2 contains data and methods, section 3
presents the analysis, and section 4 gives conclusions
and future work.

2. Data and methods
a. Satellite data and algorithms

GOES-12 and GOES-13 imager data are used in this
study 1) as input into a cloud-object identification and
tracking system and 2) as input into satellite algorithms
that compute a cloud mask (Heidinger 2010), cloud-top
phase (Pavolonis 2010a,b; Sieglaff et al. 2011), 11-um
top-of-troposphere cloud emissivity (Pavolonis 2010a),
and cloud optical depth 7/effective radius r, (Walther
and Heidinger 2012). The output from these GOES
algorithms is combined with the cloud-object-tracking
output to calculate satellite-based convective-cloud-
property evolution metrics.

The 11-um top-of-troposphere cloud emissivity g is
the 11-wm emissivity that a cloud would have if the ra-
diative center of the cloud were located at the lower
bound of the tropopause. For clouds with a large in-
frared optical depth, like the cumulus clouds analyzed
in this study, e is a measure of how close the cloud
radiative center is to the tropopause. A value of 1.0 is
indicative of a cloud that is opaque in the IR and has
an effective temperature consistent with the start of the
tropopause. In general, &, is only greater than 0.0 if
a cloud is actually present. See Pavolonis (2010a) for
a complete physical description of & In spatial terms,
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FIG. 1. A cold front over the central plains from 2215 UTC 13 May 2009, showing four satellite-derived fields used in the analysis: (a)
11-um BT, (b) top-of-troposphere emissivity, (c) cloud phase, and (d) cloud optical depth.

€0t Maintains the gradients observed in the 11-um BT
field (see Figs. 1a,b). Unlike BT, however, the g field is
less sensitive to the thermodynamic state of the back-
ground, cloud-free, atmosphere. For example, a mature
convective cloud nearing the tropopause will always
have g values approaching 1.0, whereas the BT of such
a cloud can vary on the order of tens of degrees Celsius
both latitudinally and by season. In addition, &, was de-
termined to be more skillful in quantifying the vertical
cloud growth of convective clouds than is IR BT (not
shown) and therefore was chosen over the IR BT; g, is
also used for quantifying the horizontal expansion of
developing convective clouds.

In addition, & is used as input into the cloud-object
tracking system (described briefly later in the text).
There are two advantages of using g, over the IR BT
within the cloud-object tracking system: 1) the fact that
it is generally only valid (>0.0) for cloudy pixels and,
as a result, clear-sky pixels are automatically excluded
from cloud objects and 2) the aforementioned limited
sensitivity to the background (cloud free) thermody-
namic state of the atmosphere.

The GOES cloud-top-phase algorithm uses multi-
spectral GOES observations as well as output from a
multispectral GOES cloud mask (Heidinger et al. 2010)
to determine the phase of cloudy GOES pixels. The
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cloud-phase classifications include warm liquid water,
supercooled liquid water, mixed phase, and ice (see ex-
ample in Fig. 1c). The GOES cloud-top-phase output is
used for determining the rate at which a developing
convective cloud glaciates in the uppermost part of the
cloud.

The GOES 7 and r, are computed only during daylight
hours because the algorithm relies on measurements
of reflected sunlight at visible and near-infrared wave-
lengths (see example in Fig. 1d). The algorithm utilizes a
bispectral approach (0.64-3.9-um channel pair on GOES)
within an optimal estimation framework (Walther and
Heidinger 2012). The GOES 7 product, which is a mea-
sure of the vertically integrated extinction at 0.65 um, is
used to help quantify the horizontal expansion of de-
veloping convective clouds. The r, product (Hansen and
Travis 1974) provides a measure of the size of the hy-
drometeors that are contributing most significantly to the
measured 3.9-um radiation. As such, it may be a useful
proxy for updraft strength prior to cloud-top glaciation,
as stronger updrafts may have a weaker rate of change in
r. because of the shorter time available for cloud droplets
to grow by coalescence, as supported by Rosenfeld et al.
(2008). In this paper, r, is used only for liquid water re-
trievals, as identified by the cloud-top-phase algorithm.

b. Cloud-object identification and tracking

A cloud-object identification and tracking system
developed by Sieglaff et al. (2013, hereinafter S13) is
employed in this study to create cloud objects for au-
tomated computation of temporal trends of convective-
cloud growth metrics. The full details of the cloud-object
tracking system are outside the scope of this text. The
main points are described below, and the reader is en-
couraged to consult S13 for complete details. The S13
framework uses g as input to create cloud objects. A
cloud object is simply a collection of adjacent pixels
around a local maximum (of g, in this case) grouped
into a single entity on the basis of the rules of the S13
framework. Each cloud object is assigned a unique
identifier and is tracked through space and time in sub-
sequent GOES observations while maintaining the unique
identifier. The S13 framework allows for the history of
a variety of parameters to be maintained through a cloud
object’s lifetime, from infancy (as few as three GOES IR
pixels) into the mature phase (hundreds of GOES IR
pixels).

To be specific, the cloud objects are used to determine
the time rate of change of the maximum g, (vertical
growth), ice cloud fraction (glaciation rate), area of gy =
0.8 (horizontal growth), area of cloud 7 = 40 (horizontal
growth), and mean cloud effective particle radius (up-
draft vigor) for each cloud object. The temporal trends
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are computed for two classes: a severe-thunderstorm
dataset and a nonsevere-thunderstorm dataset. The
severe-thunderstorm dataset includes 120 cloud ob-
jects, which were manually identified storms with
observable growth rates (not obscured by large cloud
shields) from 21 days between 2008 and 2012 (see Fig. 2a
for their spatiotemporal distribution). The requirement
for being classified as a severe thunderstorm was a sur-
face hail or tornado report from the National Oceanic
and Atmospheric Administration (NOAA)/National
Climatic Data Center Storm Data publication (2008-12).
The surface-hail/tornado criteria were chosen because of
the ambiguity of wind-damage reports in the Storm Pre-
diction Center storm-data record (Trapp et al. 2006).
Reynolds (1980) also presents the use of severe hail
reports as a means to classify severe thunderstorms. The
nonsevere dataset (containing 864 objects) is composed
of nonsevere convective clouds for a variety of geo-
graphical and seasonal locations over the CONUS that
exhibited convective activity but that did not have any
severe-weather reports. Figure 2b shows the spatiotem-
poral distribution of the latitude—longitude constrained
boxes where the nonsevere storms were contained. The
value in the upper-right corner of each box represents
the number of storms added to the nonsevere dataset
for each location. Cloud objects in these regions were
added to the nonsevere class if they demonstrated some
vertical growth (rate of change in maximum &, > 0) and
achieved at least 35 dBZ at —10°C at some point in
their lifetime. The latter criterion was selected on the
basis of recent research about convective initiation
(Kain et al. 2013).

3. Analysis
a. Analysis of satellite-based growth metrics

For the severe and nonsevere distributions of each
metric, the rate of change at each image time for an
object is computed by simple subtraction using the
previous image time and is then normalized by minutes
elapsed. For the three vertical-growth-related predictors
(maximum &, ice cloud fraction, and mean r,), the
maximum rate of change (between successive image
times) in a given object “lifetime” is determined for all
objects in the severe and nonsevere datasets. For the
horizontal-growth predictors (object area encompassed
by certain 7 and g, contours), the rate of change be-
tween each successive image pair is determined for all
objects in each (severe and nonsevere) sample dataset.
By collecting temporal trends in this manner, we aim to
capture the largest vertical growth between successive
images and the continued horizontal growth that occurs
after the observable vertical growth has ceased. For each
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FIG. 2. (a) Each times sign marks the source point of a storm in the severe class, and the color
shows the month in which the storm occurred. (b) Each box depicts the domain from where
nonsevere storms were drawn, and the color shows the month in which the storms occurred.
The values at the top right of each box are nonsevere-storm counts.

metric and class (severe and nonsevere), probability
density functions were constructed and then smoothed
using kernel density estimation (Wilks 2006) with stan-
dard normal kernels and variable bandwidths to approx-
imate the true population probability density functions.
Bandwidth selection was heuristic, attempting to pre-
serve the underlying true distribution while eliminating
variability produced by sparsely populated bins. The
bandwidths are different for each predictor; they are
identical for both the severe and nonsevere distribu-
tions of the given predictor, however. Table 1 gives
bandwidth values, sample sizes, and the time at which

the predictor is valid (which contributes to sample-
size differences).

To test whether the means of the severe and non-
severe distributions of derived parameters are statisti-
cally different, a right-tailed (left tailed for r, rate of
change) Student’s ¢ test is performed (since the data
samples are adequately large), with the null hypothesis
being that the mean of the severe-storm distribution
is not greater than the mean of the corresponding
nonsevere-storm distribution for a given metric. Boot-
strapping is also performed, in which each sample distri-
bution is randomly resampled with replacement 5000
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TABLE 1. Summary of statistical information for the satellite predictors, including bootstrapping results of 95% confidence intervals for
sample mean and standard deviation for severe and nonsevere thunderstorms, as well as the t-test p value (comparing sample means) for

each satellite growth predictor.

95% confidence interval: ~ 95% Confidence interval: Sample t-test
Predictor (unit) Valid time Mean Std dev Bandwidth size p value

AStot (min_l)

Severe storms Night and day 0.019068-0.022 168 0.008510-0.011 878 0.005 120 0(10™*

Nonsevere storms Night and day 0.007763-0.008 714 0.007 884-0.009 065 0.005 864 010~ %
Aice (min~ 1)

Severe storms Night and day 0.0543-0.0657 0.0302-0.0382 0.018 97 01072

Nonsevere storms Night and day 0.0210-0.0248 0.0266-0.0298 0.018 577 0(107%)
AStot_arca (km2 minil)

Severe storms Night and day 47.8789-54.4834 37.7850-48.1438 11 485  0(107 1%

Nonsevere storms Night and day 8.8487-11.2709 25.2904-36.3265 11 1911 010 3%
ATyrea (km2 minfl)

Severe storms Day only 22.8107-25.7401 31.9899-34.4272 8 1392 0(107%)

Nonsevere storms Day only 1.2343-1.6787 10.1006-10.6182 8 5861 0(107%)
Ar, (um min )

Severe storms Day only 0.1197-0.1942 0.1473-0.2403 0.25 76 0.0132

Nonsevere storms Day only 0.0989-0.1241 0.1366-0.1823 0.25 446 0.0132

times to create confidence intervals of the mean and
standard deviation of the distributions, approximating
these population statistics empirically. Each of the new
samples has the same size as the original sample (Wilks
2006). Table 1 summarizes the significance p values of
the t tests, as well as the 95% confidence intervals for the
means and standard deviations for the severe and non-
severe distributions for each predictor, computed em-
pirically from the bootstrapped samples. The ensuing
analysis demonstrates the degree of discrimination be-
tween the severe and nonsevere classes, irrespective of
when a given rate of change occurred. The lead-time
analysis in section 3b helps to determine when in the
course of storm evolution these rates of change occur,
measured with respect to weather-radar variables.

1) MAXIMUM é&ror

The rate of change in maximum g, denoted Agy,
signals vertical growth in a cloud object. The hypothesis
is that strong, more-persistent updrafts are more likely
to create storms capable of severe hazards and should
reach the upper troposphere/lower stratosphere sooner
than weak updrafts do. Figure 3a shows the distribu-
tions of the lifetime maximum Ag. for the nonsevere
and severe storms. The severe distribution demonstrates
higher relative frequencies from about 0.012min ! on-
ward. Even at large rates of change, there is an order-
of-magnitude difference between severe and nonsevere
storms, although it is not explicitly visible. The mean
Ago of the severe storms is statistically greater than
the mean Agy, of the nonsevere storms [significance
p value = O(10~**)], signifying that the null hypothesis
can most certainly be rejected. Given the difference in

the shapes of the sample distributions and their large
sample sizes, this result should not be surprising.

2) GLACIATION

The rate of glaciation is the rate of change in the
fraction of the cloud object with a cloud-top phase of
ice, denoted Aice. Our hypothesis is that faster vertical
motion will cause a cloud top to convert from mostly
water to mostly ice quicker than weaker vertical motion
will. Figure 3b shows the sample distributions for Aice
(min~ ") for severe and nonsevere storms. Objects that
were initially mostly glaciated at the cloud top (ice cloud
fraction greater than 0.5) were not included in these
samples so as to capture only the conversion from mostly
liquid water to mostly ice. Again, the maximum Aice
for each object in the datasets is added to the distribu-
tions. The severe distribution is more heavily populated
at higher values than is the nonsevere distribution, at
Aice greater than approximately 0.03 min~'. The ¢ test
again demonstrates that the mean growth for the se-
vere distribution is statistically greater than that for the
nonsevere distribution (see Table 1).

3) AREA OF 7 = 40

The rate of change in area of a cloud object measures
the horizontal expansion of a storm once it loses posi-
tive buoyancy (at the cloud top) and cannot grow ver-
tically any longer. The areal expansion of the storm is
also a function of the depth of the storm’s outflow,
which is assumed to be primarily near the tropopause
in this study. Faster-growing anvil clouds are again
indicative of stronger, sustained updrafts and poten-
tially severe-weather hazards. Mainly isolated storms
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were used, to avoid artificially large areal expansions as
a result of multicell storms, which is a shortcoming of
this predictor. The 7 field identifies thicker cumuliform
clouds in the midst of thin cirrus clouds but is only

-50 0 0 100 , 150 200
Rate of change in area of ¢, , > 0.8 [km" min™]

FIG. 3. Distributions of satellite growth rates for severe (red lines)
1 and nonsevere (blue lines) thunderstorms, smoothed with kernel
density estimation: (a) Ae, (b) Aice, (€) ATarea, (d) Aetor arear and

reliable when the solar zenith angle is less than 70°.
Thus, only objects with a maximum solar zenith angle
of less than 70° are included for this metric. Larger
values of 7 are representative of deeper cumulus
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convection; the product noise is greater for larger 7
(i.e., the signal is not as consistent from storm to storm),
however. For example, one severe storm may exhibit
many pixels of a high 7 such as 100, and another severe
storm may only have a few pixels of high 7. The
threshold of 7 = 40 balances classification of cumuliform
and cirrus, to noise tolerance. Furthermore, this threshold
is similar to values of 7 that were found in recent re-
search to be characteristic of deep convective clouds
(Young et al. 2012).

Figure 3c shows the severe and nonsevere sample
distributions for the rate of change of area of 7 = 40
(denoted ATgen; km?min~t). Recall that the distribu-
tions contain every area rate of change for an object,
since we are concerned with sustained growth of a storm
and not a single instance of strong horizontal growth
(e.g., the storm’s maximum growth rate). The severe
distribution clearly has more weight at larger rates of
change (>10km”min ') than does the nonsevere dis-
tribution. This result suggests that nonsevere storms
do not grow horizontally as quickly, or that their hori-
zontal growth is not sustained. Again, the mean of the
severe class is statistically greater than that of the non-
severe class (Table 1). The separation of these two dis-
tributions suggests that this metric may be skillful at
discriminating between severe and nonsevere convec-
tion, especially for large rates of horizontal growth.

4) AREA OF gror = 0.8

Since the 7 field is limited to when the maximum solar
zenith angle is less than 70°, it is also beneficial to look
at a diurnally invariant predictor to diagnose the hori-
zontal growth/decay of storms. The 0.8 contour of &
was chosen since we are interested in areal expansion
at or near the tropopause. As described earlier, a value
of 1.0 is indicative of an opaque cloud with a top at the
bottom of the tropopause. A value of 0.8 ensures that
anvil regions that are partially transparent to 11-um ra-
diation are included, as well as storms nearing the tro-
popause. The g contours between 0.75 and 0.85 yield
similar results.

Similar to At,.,, the rate of change in area of gy, =
0.8, denoted A&yt area, demonstrates that severe storms
exhibit stronger horizontal growth than do nonsevere
storms (Fig. 3d). We see that the conditional probability
for the severe storms exceeds its counterpart at about
20km?min~'. The severe distribution is clearly much
broader than the nonsevere distribution, and the two
indeed come from different populations, as the mean
Ago_area Of the severe storms is statistically greater than
that of the nonsevere storms (Table 1). This is consistent
with a result of Soden (2004), who found that stronger
convective events are associated with larger cirrus anvil
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shields. Thus, Agy_area Mmay be a good alternative to
AT e, for diagnosing severe-storm areal expansion when
the solar zenith angle is too large or for enhancing the
confidence that the storm is or will become severe.

5) MEAN EFFECTIVE RADIUS

The r,, like 7, is only available when the solar zenith
angle is less than 70°. The r, property is derived close
to cloud top, similar to the cloud phase. It is presumed
that during the vertical growth stage of a thunderstorm
the 7, in liquid water will increase, as collisions and co-
alescence occur more often as the larger hydrometeors
are forced upward. For strong updrafts, however, the
rate of increase in 7, may not be as large as the rate of
increase for weak updrafts, as cloud droplets in weak up-
drafts have more time to grow by coalescence (Rosenfeld
et al. 2008). Once the cloud begins to definitively glaciate
in the uppermost part of the cloud, the interpretation of
r. is likely to change (e.g., Lindsey and Grasso 2008).
Thus, in this analysis, r, is only used if the cloud-top
phase indicated liquid water. The maximum rate of
change of the mean liquid water effective radius Ar, for
each storm was added to the final distributions. Figure 3e
shows the sample distributions of Ar, (wm min~ ") for se-
vere and nonsevere storms. While still statistically signifi-
cant, the practical significance of Ar, in discerning updraft
strength among severe and nonsevere thunderstorms is
much smaller than the other predictors, as there is little
apparent separation in the distributions of the two
classes (Fig. 3e).

b. Lead-time analysis ahead of NEXRAD severe
signatures

Several of these satellite predictors exhibit excellent
discrimination between severe and nonsevere thunder-
storms. While this is promising, it is also important to
demonstrate the potential lead time that trends in sat-
ellite metrics of growing convection have, prior to sig-
nificant NEXRAD features, as radar is by far the most
widely used tool in forecasting severe-storm develop-
ment. The University of Oklahoma/National Severe
Storms Laboratory in Norman, Oklahoma, has provided
merged, quality-controlled, CONUS-wide radar products
(Lakshmanan et al. 2006, 2007a,b) to evaluate the lead-
time potential of the satellite predictors.

The evaluation period contained a combined 29 days
from January and March—October, spanning 2008-11.
Of these days, 20 contained some storms from the severe
or nonsevere classes. All storms that reached designated
radar thresholds were evaluated on these days, however.
As no single radar variable or threshold is exclusively
indicative of severe weather, lead times to multiple
thresholds of three radar variables are investigated:
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1) maximum reflectivity at —10°C (REF10), 2) maxi-
mum vertically integrated liquid (VIL), and 3) maxi-
mum expected size of hail (MESH). All three maxima
are instantaneous (not lifetime maxima). These three
variables were chosen since each one captures the ver-
tical extent and intensity of storms to some degree.
Radar thresholds are preferable to storm reports for two
reasons: 1) storm reports in the United States have a
myriad of artifacts and biases (Doswell et al. 2005; Witt
et al. 1998b; Kelly et al. 1985; Morgan and Summers
1982) and 2) we are attempting to approximate the
amount of lead time relative to warning issuance (and
not reported time) while making an effort to remove
potential warning biases that different National Weather
Service offices may exhibit (e.g., Polger et al. 1994).

The five satellite predictors of interest in this paper
are Agyy, Are, Aice, ATyrea, and Agioq area. FOr brevity,
only Agy, and Agy rea are shown, because they have
the lowest p values for the vertical and horizontal
growth predictors, respectively. For clarity, lead times
to the radar values are only shown for given rates of
change that exceed a certain threshold, consistent with
astorm that is “‘severe.” For Ag, 0.02 min ! is used; for
Aéio; area» 40km? min ! is used. The first rate of change
(between successive images) to exceed the threshold for
each predictor is used to measure lead time for each
storm. See Figs. 3a and 3d for a reference on where these
thresholds lie in the severe- versus nonsevere-storm dis-
tributions. The decreasing cumulative distribution func-
tions (CDFs) of lead times are shown for each radar
threshold for each predictor in Fig. 4.

1) REFLECTIVITY AT —10°C

The storm’s REF10 is grouped in increments of
5 dBZ, from 30 to 65 dBZ. Over the 29 days, 7759 in-
dependent storms (cloud objects) achieved REF10 =
30dBZ. In Fig. 4a, the CDFs of lead times are displayed
for different REF10 thresholds, for Ag,, = 0.02min '
The shaded box to the right of the lead-time threshold
and above the REF10 threshold shows the percentage
of storms that exceed that lead-time value, for the given
radar threshold. For instance, approximately 65% of
storms have lead times greater than 15 min prior to the
first occurrence of REF10 = 55 dBZ. The CDFs show
that a significant proportion of storms with positive
lead times occur at 45 = REF10 < 55 dBZ and that
substantial lead times are evident at REF10 = 55 dBZ.
This vertical predictor demonstrates beneficial lead
time to moderate to strong REF10. Figure 4b demon-
strates lead-time CDFs for Ao area = 40km?min~".
The majority of storms have negative lead times,
prior to REF10 = 55 dBZ. Above that threshold, 35%
of the storms have more than 5min of lead time. At
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REF10 = 60 dBZ, 45% of storms have lead times
greater than 15min. This result demonstrates that large
Agior_area Offers little lead time on REF10 except at large
values. This is not surprising, as anvil expansion generally
lags rapid updraft growth, which is consistent with results
from early research on satellite-observed storms (Adler
and Fenn 1979a,b).

2) VERTICALLY INTEGRATED LIQUID

VIL measures the column-integrated liquid water
content in storms (Greene and Clark 1972) and has been
used for severe-weather forecasting, as enhanced re-
flectivity returns from hailstones often contaminate the
liquid water signal. VIL was binned in increments of
S5kgm 2 from 15 to 60 kg m % During the 29 days, 2523
storms achieved VIL = 15kgm 2 Figure 4c displays
the CDFs of lead time to different thresholds of VIL, for
A& = 0.02min "', Fifty percent of storms have a lead
time of 15min or greater prior to VIL = 20kgm 2, for
this rate-of-change threshold. For the storms reaching
VIL =35kg m~2,65% have over 35 min of lead time; for
storms achieving VIL = 50kgm 2, 95% have lead times
of greater than 15min. The Ag, clearly demonstrates
useful lead time, even at low to moderate VIL values.
For Agiot_area = 40 km?min~"!, the CDFs of lead time
still exhibit large numbers of storms with positive lead
time (Fig. 4d), albeit at moderate to stronger VIL values.
Approximately 20% of storms reaching VIL = 25kgm 2
have lead times of greater than 15min, and 35% of
storms reaching VIL = 40kgm 2 have lead times of
greater than 15 min. For VIL = 50kgm 2, almost 60%
of storms have lead times that exceed 15 min.

3) MAXIMUM EXPECTED SIZE OF HAIL

MESH is empirically derived from the severe hail
index (Witt et al. 1998a), which is a reflectivity-weighted
vertical integration from the 0°C isotherm to the top of
the storm, neglecting reflectivity values below 40 dBZ
and attempting to capture the integrated ice content
of the storm. MESH does not have a one-to-one cor-
respondence with hail size (Wilson et al. 2009), but
Cintineo et al. (2012) showed that it is a good discrimi-
nator for the severe-sized hail threshold [1-in. (25.4 mm)
diameter]. Stronger MESH certainly indicates strong
reflectivity high into the atmosphere. MESH was bin-
ned by 0.25 in., from 0.25 to 2.0 in. The 29 days in this
lead-time analysis yielded 1534 storms with MESH =
0.25 in. Figure 4e shows the lead-time CDFs for Ag o =
0.02min"'. Nearly 75% of storms have lead times that
exceed 15 min, prior to MESH = 0.5 in. Prior to MESH
= 1.0 in., the proportion increases to 85% with 15 min
or greater of lead time. The CDFs of lead time for
A€ot area =40 km? min~! demonstrate useful lead times
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FIG. 4. Decreasing CDFs of lead time prior to radar-derived thresholds. Each row represents an independent CDF. Shown are Ag o =
0.02min"" for (a) REF10, (¢) VIL, and (¢) MESH thresholds and Ago area = 40km®>min ™" for (b) REF10, (d) VIL, and (f) MESH
thresholds. See Figs. 3a and 3d for a reference of these satellite metric thresholds.

(Fig. 4f), although they are not as impressive as those
for Agiy. There are still 25% of storms with 15 min or
more of lead time before 0.5-in. MESH is reached and
45% of storms with 15 min or more of lead time prior to
1.0 in. of MESH. Prior to very strong MESH (=2.0in.),
approximately 75% of storms exhibit at least 15 min of
lead time.

The Ago1_area has good lead time for severe-level VIL
and MESH, and Ag has excellent lead time for VIL,
MESH, and moderate REF10. Even though Agy area
and Aeg.,; do not have substantial lead time for every
storm, it is promising that large percentages of storms
have modest to excellent lead times prior to severe radar

signatures. It is clear, however, that satellite metrics that
capture vertical growth should generally be more valu-
able for predicting which immature cumuliform clouds
are most likely to produce severe weather later in their
life cycles.

c. The effect of temporal sampling on the observed
growth rates of storms

Numerous studies have estimated the vertical mo-
tion of continental and tropical deep convection using
ground-based or airborne Doppler radar (e.g., Heymsfield
and Schotz 1985; Heymsfield et al. 2010; Cecil et al.
2010). In an operational setting, convective cloud growth
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can be inferred from high-temporal-resolution geosta-
tionary imagery. An opportunity presented itself when
GOES-14 was used, at times, in August and September of
2012 to conduct super-rapid-scan operations (SRSOR) for
simulations of the next generation of GOES (GOES-R).
Scenes of opportunity were identified each day, in which
the satellite would scan a selected domain at 1-min fre-
quency (with a 4-min scan gap every 30 min). This very
high temporal resolution of growing thunderstorms pro-
vided an excellent occasion to see how varying temporal
sampling of storms affected their observed growth
rates. Storms that formed over Missouri and Arkansas
on 16 August 2012 were investigated. These data were
acquired from the University of Wisconsin Space Sci-
ence and Engineering Center’s data center.

On this day, a strong short-wave trough was forecast
to move into the upper Great Lakes, with ample in-
stability (~2000-3000Jkg ' of surface-based CAPE)
ahead of a trailing surface cold front, creating an ele-
vated hail and high-wind threat from southern Michigan
to northeastern Oklahoma and northern Arkansas. Iso-
lated storms began forming on and ahead of the front
around 1700 UTC while the GOES-14 SRSOR was in
progress. Three storms are shown in this paper (Fig. 5):
two from Arkansas and one from Missouri. Each storm
had at least one severe-hail or severe-wind report asso-
ciated with it. The maximum &, and area of g, = 0.8
are shown as functions of time after initial identification
to in Fig. 6. The gray dotted lines in each panel of Fig. 6
denote the endpoints of the 15-min interval of the fastest
vertical (Figs. 6a,c,e) or horizontal (Figs. 6b,d,f) growth
for each of the three storms. The 11-um BT at the be-
ginning and end of the interval of fastest vertical growth
is also shown (Figs. 6a,c,e). The 1-min data yielded max-
imum Ag, from 0.06 to 0.1 min~'. The Global Forecast
System—estimated tropopause heights ranged from 14 000
to 14200 m in the region during the rates of maximum
vertical growth. The Ag, of these magnitudes in this
range of tropopause heights yields maximum vertical
velocities ~19-24ms ™! (average over 1min), which is
similar to instantaneous maximum vertical velocities
of deep convection found in recent observational studies
(Heymsfield et al. 2010; Cecil et al. 2010). The 15-min-
interval endpoints of each growth metric were used to
create CDFs of the vertical and horizontal growth for
each storm over that time period (Fig. 7) to compare
with the 1-min-resolution time series over that time.
The 15-min period of fastest growth illustrates a “‘best-
case scenario” that current GOES routine operation
scan mode would be able to capture (i.e., it is not de-
pendent on where in the interval the scan would begin).
For the vertical growth of storm 1 (Fig. 7a), 33% of its
growth occurred in the first 8 min of the interval and the
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11—um Brightness Temperature [K]

300 290 280 270 260 250 240 230 220 210 200

F1G. 5. The 11-um BT from 1800 UTC 16 Aug 2012 over southern
Missouri and Arkansas. The yellow numbers depict storms that are
used for the time-series comparison (see Fig. 6, below). An anima-
tion of the storms’ evolution from the visible channel and other
SRSOR scenes is available online (http:/cimss.ssec.wisc.edu/goes/
srsor/GOES-14_SRSOR.html).

next 51% of its growth during this period occurred in
the next 4min (26.7% of the 15-min period). For the
vertical growth of storm 3 (Fig. 7e), nearly 70% of the
growth occurred in the first 6 min of the interval, in
40% of the 15 min. Storm 2 (Fig. 7c) grew vertically by
13% in the first minute (in 6.7% of the 15-min period),
and the remainder of its vertical growth was mostly
linear. This demonstrates that much of the vertical growth,
especially the maximum growth rate in these storms, is
not adequately resolved by 15-min temporal resolution.
Five-minute temporal resolution would be needed to
reasonably resolve vertical growth rates such as those
exhibited by storms 1 and 3.

For the horizontal growth rates of these storms (Figs.
7b,d,e), most of the growth is fairly linear over the 15-min
time intervals. Small spurts of growth do occur, but 10- or
15-min temporal resolution may be acceptable to cap-
ture the horizontal growth rates. Even so, the promise of
consistent 5-min scans from GOES-R (Schmit et al. 2005)
should help to alleviate the underresolution of vertical
growth rates (which may hinder storm discrimination)
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FIG. 6. Time series of (a),(c),(e) maximum g, and (b),(d),(f) area of &, = 0.8 as a function of minutes elapsed
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and to sharpen the accuracy of horizontal growth rates of
thunderstorms.

4. Conclusions and future work

Robust satellite-derived cloud products were used to
investigate growth rates of convective clouds prior to

their maturation. Research on the trends of storms from
geostationary imagery is not new; the approach used
in this paper is unique, however. Excellent discernment
between severe and nonsevere thunderstorms was dem-
onstrated in several growth metrics. Two vertical growth
metrics (Agy and Aice) and two horizontal growth met-
rics (Aot area and AT,.e,) Were shown to have very good
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classification value. Furthermore, Ag. and Agy area
demonstrated good lead time for a large proportion of
storms for several radar predictors. All satellite-based
predictors had appreciable lead time for low and mod-
erate MESH and VIL values, whereas only the vertical
predictor Ag, exhibited lead time on moderate REF10.
The vertical predictors demonstrate more lead time than
do the horizontal predictors for all radar thresholds.
These results are consistent with Adler and Fenn (1979a),

who related areal expansion of an isotherm and cloud-
top cooling to the magnitude of updraft velocity and to
severe-weather reports on the ground. Radar thresh-
olds were selected to measure lead time in the study
presented here, however. This research also demon-
strated that satellite-observable storm properties evolve
on small time scales (<5min) and that current geosta-
tionary scan strategies are insufficient to completely
capture the vertical and perhaps horizontal growth
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rates of deep convection. Adler and Fenn (1979a) also
suggested that short-interval (~5min) scans are neces-
sary to adequately sample storm growth rates. The max-
imum vertical velocities of strong thunderstorms derived
from 1-min GOES imagery are comparable to the find-
ings of recent observational studies of continental deep
convection.

With excellent statistical and practical separation
among the distributions of several GOES-derived growth
metrics between severe and nonsevere thunderstorms,
there is potential to better classify the future severity
of developing convection and perhaps add lead time to
radar-indicated warnings. A statistical model is cur-
rently being trained and evaluated with a combination
of the satellite metrics discussed in this paper, numer-
ical weather prediction output of storm environment,
and radar metrics to predict the probability that a grow-
ing, unobscured convective cloud will produce severe
weather at a later time. This fused method attempts to
maximize the utility afforded by multiple sensors and
platforms with high temporal and spatial resolutions on
current observing systems. This and similar approaches
hold promise not only in the present day but in the
future as well, when sensors with improved coverage,
resolution, and capabilities will have been deployed
and integrated into the forecast process.
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