GOES World

May 18th, 2022 |
GOES-17, -18, -16 (West-to-Central-to-East) CIMSS Natural Color imagery at local noon, 15 May 2022. GOES-18 is Preliminary/Non-Operational (click to enlarge)

The image above (credit to Rick Kohrs from SSEC/CIMSS) shows Advanced Baseline Imager (ABI) data from GOES-17 (West), GOES-18 (Central, Preliminary/Non-Operational), and GOES-16 (East) on 15 May 2022. This “Local Noon CIMSS Natural Color” image is created by blending vertical strips of true-color imagery at local noon, starting in the east and proceeding westward. This was a rare opportunity for the GOES-R Series as GOES-18 was only at the central location (89.5W) for a limited time. A larger (5509×4207) version of this image is also available.

Other CIMSS Blog entries have introduced GOES-18, the latest in the GOES-R series. NOAA and NASA recently released the first ABI (Advanced Baseline Imager) imagery from GOES-18 (including this 2-min video). GOES-T was launched on 1 March 2022. Currently GOES-18 is “drifting” out west to be near the “West” position. GOES-18 is slated to become NOAA’s operational GOES-West in early 2023 (GOES-18 Post Launch Test and Transition Plan) after a thorough post-launch test period.

SSEC/CIMSS scientists (notably Rick Kohrs) create daily imagery that blends vertical strips of true-color imagery at local Noon, starting near the dateline and proceeding westward. Recent images are available at this website and include data from 5 geostationary satellites: Himawari, GOES-West, GOES-East, Meteosat-Prime, and Meteosat-IODC. There are multiple other blog posts featuring and explaining the local-noon composite.

“Ring” Solar eclipse shadow moving across northern North America

June 10th, 2021 |

Early on June 10th, 2021 there was a solar eclipse for the northern portions of the globe. This was not a total, but annular (or “ring”) solar eclipse. Satellite instruments, such as NOAA’s ABI on GOES-16 (East) can monitor the shadow of the moon as it falls on the Earth. There are several recent examples from December 2020 (South America), June 2020 (southern Asia), December 2019 (central Pacific), July 2019 (southern hemisphere), January 2019 (Asia) and August 2017 (central US).


The shadow cast on the Earth could be seen from NOAA’s GOES-16 (East) ABI. This included both the visible and near-infrared spectral bands, and the ABI band 7 (at 3.9 micrometers).

A time animation of NOAA’s GOES-16 ABI band 3 (0.86 micrometers) on June 10, 2021.
A time animation of the cooling associated wit the shadow on the Earth’s surface can be seen in this GOES-16 ABI band 7 (3.9 micrometers) animation.
A time animation of the Full Disk view showing the CIMSS true color spectral composite on June 10, 2021. This product does not employ a Rayleigh correction.

There are other similar loops are posted on many web pages, such as this one from UW/SSEC. This page is a collection of those links.

The 10 UTC composite Full Disk GOES-16 image from June 10, 2021.

A larger image of the GOES-16 10 UTC Full Disk composite shown above.

The shadow from the moon could also been seen from NOAA’s GOES-17 (West) ABI on June 10, 2021.

A more zoomed in GOES-17 view.

AWIPS animation (mp4) of the CIMSS Natural Color RGB from both GOES-16 and GOES-17.

The same loop as above, but as an animated gif. Thanks to Scott.

Japan’s AHI

Japan’s AHI near-infared (band 4 centered at 0.86 micrometers) imagery on June 10, 2021.

While it’s subtle, the shadow could also be seen in Japan’s AHI.

HEO (highly elliptical orbit)

A satellite was recently launched by Russia into a highly elliptical orbit (Molniya). The satellite (Arctica) is in a commissioning phase, but some imagery from the 10-band imager of the eclipse shadow was released.

Google translation: An annular happened today #???????? Suns — For the first time in half a century, it was accessible for observation from Russia; it was best seen from Yakutia and Chukotka. Russian satellites #??????? and #???????? were able to capture this astronomical phenomenon from orbit.

Ground-based Image

A image from Chris Draves over Lake Mendota (Madison, WI).


This map of the eclipse path shows where the June 10, 2021, annular and partial solar eclipse will occur. Times are UTC.
Credits: NASA’s Scientific Visualization Studio/Ernie Wright.


NOAA GOES-16 ABI data are via the University of Wisconsin-Madison SSEC Satellite Data Services. Thanks Scott Bachmeier, CIMSS for the AWIPS animation.