Intro to High Spectral Resolution IR Measurements

Lectures in Madison
27 March 2013

Paul Menzel
UW/CIMSS/AOS

line broadening with pressure helps to explain weighting functions

line broadening with pressure helps to explain weighting functions

$$
-\mathrm{k}_{\mathrm{v}} \mathrm{u}(\mathrm{z})
$$

$$
\tau_{v}(\mathrm{z} \rightarrow \infty)=\mathrm{e}
$$

Wavenumber
Energy Contribution

For a given water vapor spectral channel the weighting function depends on the amount of water vapor in the atmospheric column

CO 2 is about the same everywhere, the weighting function for a given CO 2 spectral channel is the same everywhere

Vibrational Bands

CO_{2} Vibration - Rotation Spectra

$$
E(v, J)=\underbrace{h v\left(v+\frac{1}{2}\right)-x h v\left(v+\frac{1}{2}\right)^{2}+\ldots}_{\text {vibration }}+\underbrace{B_{v}\left[J(J+1)-\ell^{2}\right]-D_{v}\left[J(J+1)-\ell^{2}\right]^{2}+\ldots}_{\text {rotation }}
$$

$\mathrm{H}_{2} \mathrm{O}$ Vibration - Rotation Spectra

Rotational Lines

Earth emitted spectrum in CO2 sensitive 705 to 760 cm-1

Broad Band

... in Brightness Temperature

High Spectral Resolution

Sampling over rotational bands

Infrared Radiance and Brightness Temperature Spectrum

Planck Function

$$
B_{v}(T)=2 h c^{2} v^{3} / \exp \left(\frac{h c v}{k T}\right)-1
$$

Upwelling IR radiation

$$
R_{v}=\int_{z_{0}}^{\infty} B_{v}(T(z)) \frac{d \tau_{v}(z)}{d z} d z
$$

From E. Weisz

Atmospheric Temperafure Profile Retrieval

$$
R_{v}=\int_{p s}^{0} B_{v}(T(p)) W_{v}(p) d p
$$

$$
W_{v}(p)=\partial \tau_{v}(p) / \partial \ln p
$$

High-spectral measurements

Profiles at high-vertical resolution
From E. Weisz

Regression Retrieval Summary

From E. Weisz

Dual-Regression Retrieval

Moisture Weighting Functions
High spectral resolution advanced sounder will have more and sharper weighting functions compared to current GOES sounder. Retrievals will have better vertical resolution.

Resolving absorption features in atmospheric windows

 enables detection of temperature inversions

Detection of inversions is critical for severe weather forecasting. Combined with improved low-level moisture depiction, key ingredients for night-time severe storm development can be monitored.

Ability to detect inversions disappears with broadband observations (> $3 \mathrm{~cm}-1$)

Longwave window region

Longwave window region

Twisted Ribbon formed by CO_{2} spectrum:

 Tropopause inversion causes On-line \& off-line patterns to cross

Wavelength ($\mu \mathrm{m}$)

Inferring surface properties with AIRS high spectral resolution data Barren region detection if T1086 < T981

Barren vs Water/Vegetated

AIRS data from 14 June 2002
$\mathrm{T}\left(981 \mathrm{~cm}^{-1}\right)-\mathrm{T}\left(1086 \mathrm{~cm}^{-1}\right)$

$\mathrm{T}\left(1086 \mathrm{~cm}^{-1}\right)$

from Tobin et al.

$R=\varepsilon_{s} B s(1-\sigma c)+\sigma_{c} B c \quad$ using $e^{-\sigma}=1-\sigma$

So difference of thin ice cloud over ocean from clear sky over ocean is given by
$\Delta \mathrm{R}=-\varepsilon s \sigma_{c} \mathrm{~B} s+\sigma c \mathrm{Bc}$

For $\mathrm{Bs}>\mathrm{Bc}$ and $\varepsilon s \sim 1$
$\Delta R=-\sigma_{c} B s+\sigma_{c} B c=\sigma_{c}[B c-B s]$

As $\boldsymbol{\sigma c}$ increases (decreases) then $\Delta \mathrm{R}$ becomes more negative (positive)

Imaginary Index of Refraction of Ice and Dust

IASI detection of dust

red spectrum is from nearby clear fov

IASI detection of cirrus

wavenumber $1349.75 \mathrm{~cm}^{\mathrm{A}}$-1
 window

- In the 800-1000 cm^{-1}
atmospheric window:
Silicate index increases
Ice index decreases
with wavenumber

Volz, F.E. : Infrared optical constant of
ammonium sulphate, Sahara Dust, ammonium sulphate, Sahara Dust,
volcanic pumice and flash, Appl Opt 12
$564-658$ (1973)

AIRS.2002.10.28.123.L1B.AIRS_Rad.v2.6.10.3.A02302200913
$\sim 12521 / \mathrm{cm} \mathrm{Tb}-\sim 9131 / \mathrm{cm} \mathrm{Tb}$

AIRS.2002.10.28.123.L1B.AIRS_Rad.v2.6.10.3.A02302200913
$\sim 9131 / \mathrm{cm} \mathrm{Tb}-\sim 8371 / \mathrm{cm} \mathrm{Tb}$

Mt Etna Ash cloud at 500 hPa

wavenumber $919.47 \mathbf{c m}^{\wedge}$ - 1

istrument: AIRS

Mt Etna volcanic plume SO2 (left) from 1284-1345
 Ash (right) from 832-900

39

AIRS Spectra from around the Globe

Intro to Microwave and Split Window Moisture

Lectures in Madison
27 March 2013

Paul Menzel UW/CIMSS/AOS

Earth emitted spectra overlaid on Planck function envelopes

High resolution atmospheric absorption spectrum and comparative blackbody curves.

MODIS IR Spectral Bands

High resolution atmospheric absorption spectrum and comparative blackbody curves.

First order estimation of SST correcting for low level moisture

Moisture attenuation in atmospheric windows varies linearly with optical depth.

$$
\tau_{\lambda}=\mathrm{e}^{-\mathrm{k}_{\lambda} \mathrm{u}}=1-\mathrm{k}_{\lambda} \mathrm{u}
$$

For same atmosphere, deviation of brightness temperature from surface temperature is a linear function of absorbing power. Thus moisture corrected SST can inferred by using split window measurements and extrapolating to zero k_{λ}

$$
\mathrm{T}_{\mathrm{s}}=\mathrm{T}_{\mathrm{bw} 1}+\left[\mathrm{k}_{\mathrm{w} 1} /\left(\mathrm{k}_{\mathrm{w} 2}-\mathrm{k}_{\mathrm{w} 1}\right)\right]\left[\mathrm{T}_{\mathrm{bw} 1}-\mathrm{T}_{\mathrm{bw} 2}\right]
$$

Moisture content of atmosphere inferred from slope of linear relation.

MODIS SEA SURFACE TEMPERATURE

In the IRW - A is off H 2 O line and B is on H 2 O line

Weighting Function

Radiation is governed by Planck's Law

$$
\mathbf{B}(\lambda, T)=c_{1} /\left\{\lambda^{5}\left[e^{c_{2} / \lambda T}-1\right]\right\}
$$

In microwave region $c_{2} / \lambda T \ll 1$ so that

$$
\mathbf{e}^{\mathbf{c}_{2} / \lambda T}=1+\mathbf{c}_{2} / \lambda T+\text { second order }
$$

And classical Rayleigh Jeans radiation equation emerges

$$
\mathbf{B}_{\lambda}(\mathbf{T}) \approx\left[\mathbf{c}_{1} / \mathbf{c}_{2}\right]\left[\mathbf{T} / \lambda^{4}\right]
$$

Radiance is linear function of brightness temperature.

ISCCP-Dx 19g207-199sigi Hean Annual

ISCCP-D1 1992 Hean Annual

10 to 11 um

Microwave Form of RTE

$$
\begin{array}{r}
\begin{array}{r}
\mathrm{I}^{\mathrm{sfc}}=\varepsilon_{\lambda} \mathrm{B}_{\lambda}\left(\mathrm{T}_{\mathrm{s}}\right) \tau_{\lambda}\left(\mathrm{p}_{\mathrm{s}}\right) \\
\lambda
\end{array}+\left(1-\varepsilon_{\lambda}\right) \tau_{\lambda}\left(\mathrm{p}_{\mathrm{s}}\right) \int_{\mathrm{o}}^{\mathrm{p}_{\mathrm{s}}} \mathrm{~B}_{\lambda}(\mathrm{T}(\mathrm{p}))
\end{array} \frac{\partial \tau_{\lambda}^{\prime}(\mathrm{p})}{\partial \ln \mathrm{p}} \mathrm{~d} \ln \mathrm{p} .
$$

In the microwave region $c_{2} / \lambda T \ll 1$, so the Planck radiance is linearly proportional to the brightness temperature

$$
\mathrm{B}_{\lambda}(\mathrm{T}) \approx\left[\mathrm{c}_{1} / \mathrm{c}_{2}\right]\left[\mathrm{T} / \lambda^{4}\right]
$$

So

$$
\mathrm{T}_{\mathrm{b} \lambda}=\varepsilon_{\lambda} \mathrm{T}_{\mathrm{s}}\left(\mathrm{p}_{\mathrm{s}}\right) \tau_{\lambda}\left(\mathrm{p}_{\mathrm{s}}\right)+\int_{\mathrm{p}_{\mathrm{s}}}^{\mathrm{o}} \mathrm{~T}(\mathrm{p}) \mathrm{F}_{\lambda}(\mathrm{p}) \frac{\partial \tau_{\lambda}(\mathrm{p})}{\partial \ln \mathrm{p}} \mathrm{~d} \ln \mathrm{p}
$$

where

$$
\mathrm{F}_{\lambda}(\mathrm{p})=\left\{1+\left(1-\varepsilon_{\lambda}\right)\left[\frac{\tau_{\lambda}\left(\mathrm{p}_{\mathrm{s}}\right)}{\tau_{\lambda}(\mathrm{p})}\right]^{2}\right\}
$$

Transmittance

$$
\begin{aligned}
& \tau(\mathrm{a}, \mathrm{~b})=\tau(\mathrm{b}, \mathrm{a}) \\
& \tau(\mathrm{a}, \mathrm{c})=\tau(\mathrm{a}, \mathrm{~b}) * \tau(\mathrm{~b}, \mathrm{c})
\end{aligned}
$$

Thus downwelling in terms of upwelling can be written
$\tau^{\prime}(\mathrm{p}, \mathrm{ps})=\tau(\mathrm{ps}, \mathrm{p})=\tau(\mathrm{ps}, 0) / \tau(\mathrm{p}, 0)$
and

$$
\mathrm{d} \tau^{\prime}(\mathrm{p}, \mathrm{ps})=-\mathrm{d} \tau(\mathrm{p}, 0) * \tau(\mathrm{ps}, 0) /[\tau(\mathrm{p}, 0)]^{2}
$$

WAVELENGTH		FREQUENCY		WAVENUMBER
$\mathrm{cm} \quad \mu \mathrm{m}$	Å	Hz	GHz	cm^{-1}
10^{-5} Near Ultraviolet (UV)	1,000	3×10^{15}		
4×10^{-5} 0.4 Visible	4,000	7.5×10^{14}		
7.5×10^{-5} Near Infrared (IR)	7,500	4×10^{14}		13,333
$\begin{array}{ll} 2 \times 10^{-3} \\ \text { Far Infrared (IR) } \end{array}$	2×10^{5}	1.5×10^{13}		500
$\begin{array}{cc} 0.1 & 10^{3} \\ \text { Microwave (MW) } \end{array}$		3×10^{11}	300	10

Microwave spectral bands

23.8 GHz dirty window H2O absorption
31.4 GHz window
$60 \mathrm{GHz} \quad \mathrm{O} 2$ sounding
$120 \mathrm{GHz} \quad \mathrm{O} 2$ sounding
$183 \mathrm{GHz} \quad \mathrm{H} 2 \mathrm{O}$ sounding

$23.8,31.4,50.3,52.8,53.6,54.4,54.9,55.5,57.3$ (6 chs), $89.0 \stackrel{57}{\mathrm{GH}}$

$\mathrm{Tb}=\varepsilon_{\mathrm{s}} \mathrm{T}_{\mathrm{s}} \tau_{\mathrm{m}}+\varepsilon_{\mathrm{m}} \mathrm{T}_{\mathrm{m}}+\varepsilon_{\mathrm{m}} \mathbf{r}_{\mathrm{s}} \tau_{\mathrm{m}} \mathrm{T}_{\mathrm{m}}$
$\mathrm{Tb}=\boldsymbol{\varepsilon}_{\mathrm{s}} \mathrm{T}_{\mathrm{s}}(1-\sigma \mathrm{m})+\boldsymbol{\sigma}_{\mathrm{m}} \mathrm{T}_{\mathrm{m}}+\boldsymbol{\sigma m}\left(1-\varepsilon_{\mathrm{s}}\right)(1-\boldsymbol{\sigma m}) \mathrm{Tm} \quad$ using $\mathrm{e}^{-\sigma}=1-\sigma$
So temperature difference of low moist over ocean from clear sky over ocean is given by
$\Delta \mathrm{Tb}=-\boldsymbol{\varepsilon} s \boldsymbol{\sigma}_{\mathrm{m}} \mathrm{T}_{\mathrm{s}}+\boldsymbol{\sigma} \mathrm{m} \mathrm{T}_{\mathrm{m}}+\boldsymbol{\sigma} \mathrm{m}(1-\boldsymbol{\varepsilon} \mathrm{s})\left(1-\boldsymbol{\sigma}_{\mathrm{m}}\right) \mathrm{T}_{\mathrm{m}}$
For $\varepsilon_{s} \sim 0.5$ and $\mathrm{T}_{\mathrm{s}} \sim \mathrm{T}_{\mathrm{m}}$ this is always positive for $0<\sigma_{\mathrm{m}}<1$

$\mathrm{R}=\varepsilon_{s} \mathrm{Bs}(1-\sigma \mathrm{m})+\sigma \mathrm{m} \mathrm{Bm} \quad$ using $\mathrm{e}^{-\sigma}=1-\sigma$ and $\tau \sim 1-\sigma \sim 1-\mathrm{a}$

So difference of low mist over ocean from clear sky over ocean is given by
$\Delta \mathrm{R}=-\boldsymbol{\varepsilon} s \sigma_{\mathrm{m}} \mathrm{Bs}+\sigma \mathrm{m} B m$

For $\boldsymbol{\varepsilon} s \sim 1$
$\Delta \mathrm{R}=-\boldsymbol{\sigma} \mathrm{m} \mathrm{s}+\boldsymbol{\sigma} \mathrm{m} \mathrm{Bm}=\boldsymbol{\sigma} \mathrm{m}[\mathrm{Bm}-\mathrm{B} s]$

So if $[\mathrm{Bm}-\mathrm{Bs}]<0$ then as $\sigma \mathrm{m}$ increases $\Delta \mathrm{R}$ becomes more negative

ATMS Weighting Functions

Spectral regions used for remote sensing of the earth atmosphere and surface from satellites. ε indicates emissivity, q denotes water vapour, and T represents temperature.

