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Wavenumber Energy Contribution 

line broadening with pressure helps to explain weighting functions 
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For a given water vapor spectral channel the weighting function depends on the 

amount of water vapor in the atmospheric column 

CO2 is about the same everywhere, the weighting function for a given CO2 

spectral channel is the same everywhere 4 
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CO2 Lines 
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H2O Lines 
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Earth emitted spectrum in CO2 sensitive 705 to 760 cm-1 
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Broad Band  
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Sampling of vibrational bands 

Integration over rotational bands 
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… in Brightness  

Temperature 
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High Spectral Resolution 

Sampling over rotational bands 
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Moisture Weighting Functions 

Advanced Sounder 

     (3074) 
GOES 
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High spectral resolution advanced sounder will have more 

and sharper weighting functions compared to current GOES 

sounder. Retrievals will have better vertical resolution. 
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Resolving absorption features in atmospheric windows 

enables detection of temperature inversions 

Detection of inversions is critical for severe weather 

forecasting.  Combined with improved low-level moisture 

depiction, key ingredients for night-time severe storm 

development can be monitored. 

Spikes down -  
Cooling with height 

Spikes up - 
Heating with height 
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IASI detection 

of temperature 

inversion 

(black spectrum) 

vs 

clear ocean 

(red spectrum) 

21 



Ability to detect inversions 

disappears with 

broadband observations 

(> 3 cm-1) 
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Longwave window region 

On-line/off-line “signal” 
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Longwave window region 

“AIRS or IASI-like” 
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Longwave window region 25 



Longwave window region 26 



Longwave window region 27 



Longwave window region 28 



Longwave window region 

“Current GOES-like” 
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Twisted Ribbon formed by CO2 spectrum: 
 Tropopause inversion causes On-line & off-line patterns to cross 

Blue between-line Tb  

warmer for tropospheric channels, 

colder for stratospheric channels 

Signature not available at low resolution 

15 m CO2 Spectrum 

     strat 

 

tropopause 
         

trop 
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2500             1000      715 cm-1 
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Inferring surface properties with AIRS high spectral resolution data 

Barren region detection if T1086 < T981 T(981 cm-1)-T(1086 cm-1) 

T(1086 cm-1) 

Barren vs Water/Vegetated 

AIRS data from 14 June 2002 from Tobin et al. 
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R = s Bs (1-c) + c Bc     using e-σ = 1 - σ 

 

So difference of thin ice cloud over ocean  

       from clear sky over ocean is given by 

 

ΔR = - s c Bs + c Bc 

 

For  Bs >  Bc and s ~1 

 

ΔR = - c Bs + c Bc = c [Bc - Bs ] 

 

As c increases (decreases) then ΔR becomes more 

negative (positive) 

Thin ice cloud over ocean 

800 900 1000 1100 1200 1300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavenumber (cm
-1

)

n
I

Ice
Dust

Imaginary Index of Refraction of Ice and Dust

• Both ice and silicate 
absorption small in 1200 cm-1

window

• In the 800-1000 cm-1

atmospheric window:

Silicate index increases

Ice index decreases

with wavenumber

Volz, F.E. : Infrared optical constant 

of ammonium sulphate, Sahara 

Dust, volcanic pumice and flash, 

Appl Optics 12 564-658 (1973)

Dust and Cirrus SignalsDust and Cirrus Signals

~1-σ~1-a a 

6735_98



IASI detection of dust IASI detection of cirrus 

red spectrum is from nearby clear fov 
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Mt Etna Ash cloud at 500 hPa 
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Ash cloud and clear sky spectra 
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Mt Etna volcanic plume 

SO2 (left) from 1284-1345 

Ash (right) from 832-900 
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4 5

T10.8 - T12.0 > 0 water & ice 

T10.8 - T12.0 < 0 volcanic ash

Source: Dr. M. Watson, Michigan Technical University

Ice Ash
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Spectral features of ice and ash in 
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ET-ODRRGOS, Oxford, UK, 1-5 July 

2002
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AIRS Spectra from around the Globe 

20-July-2002 Ascending LW_Window 
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Earth emitted spectra overlaid on Planck function envelopes 
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MODIS IR Spectral Bands 

MODIS 
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First order estimation of SST correcting for low level moisture 
 
Moisture attenuation in atmospheric windows varies linearly with optical depth. 

            - k u 

  =  e             =  1 - k u 
 
For same atmosphere, deviation of brightness temperature from surface temperature 

is a linear function of absorbing power.  Thus moisture corrected SST can inferred 

by using split window measurements and extrapolating to zero k  
  Ts = Tbw1  + [ kw1 / (kw2- kw1) ] [Tbw1  - Tbw2]  .  

Moisture content of atmosphere inferred from slope of linear relation. 
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In the IRW - A is off H2O line and B is on H2O line  

IRW spectrum                                 Weighting Function 
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Radiation is governed by Planck’s Law 

 

                              c2 /T 

  B(,T)  =  c1
 /{  5 [e         -1] }     

 

In microwave region c2 /λT << 1 so that                          

       c2 /T 

  e          = 1 + c2 /λT  +  second order 

 

And classical Rayleigh Jeans radiation equation emerges  

 
   Bλ(T)    [c1 / c2 ] [T / λ4] 

               

Radiance is linear function of brightness temperature. 
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19H Ghz 49 



 

10 to 11 um 50 



Microwave Form of RTE                                                                                          atm  

              ps                 'λ(p)                         ref  atm sfc 

 Isfc  =  ελ Bλ(Ts) λ(ps) + (1-ελ) λ(ps)    Bλ(T(p))                    d ln p         

  λ             o                   ln p             

                

                            ps                  'λ(p)          

   Iλ  =  ελ Bλ(Ts) λ(ps) + (1-ελ) λ(ps)    Bλ(T(p))                      d ln p        

                                                                        o                     ln p          

                                 o                 λ(p)  __________ 

        +    Bλ(T(p))                    d ln p                        sfc 

                        ps               ln p 

 

In the microwave region c2 /λT << 1, so the Planck radiance is linearly proportional to the 

brightness temperature 

          Bλ(T)    [c1 / c2 ] [T / λ4] 

So 

                                         o                   λ(p) 

 Tbλ  =  ελ Ts(ps) λ(ps)  +    T(p) Fλ(p)                  d ln p 

                                                        ps                   ln p 

where 

           λ(ps) 

  Fλ(p)  =  { 1 + (1 - ελ)  [
                 ]2 } . 

                            λ(p) 51 



Transmittance 

(a,b) = (b,a)     

(a,c) = (a,b) * (b,c)  

 

Thus downwelling in terms of upwelling can be written 

 

’(p,ps) = (ps,p) = (ps,0) / (p,0) 

 

and  

 

 d’(p,ps) = - d(p,0) * (ps,0) / [(p,0)]2 
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Visible 
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 13,333 

 
    2x10-3                  20   2x105 
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 1.5x1013 
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Microwave (MW) 
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Microwave spectral bands 

23.8 GHz dirty window H2O absorption 

31.4 GHz   window 

60 GHz      O2 sounding 

120 GHz    O2 sounding 

183 GHz    H2O sounding 
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23.8, 31.4, 50.3, 52.8, 53.6, 54.4, 54.9, 55.5, 57.3 (6 chs), 89.0 GHz 
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Tb = s Ts m + m Tm + m rs m Tm 

 

Tb = s Ts (1-m) + m Tm + m (1-s) (1-m) Tm     using e-σ = 1 - σ 
 

So temperature difference of low moist over ocean from clear sky 
over ocean is given by 

 

ΔTb = - s m Ts + m Tm + m (1-s) (1-m) Tm 

 

For s ~ 0.5 and Ts ~ Tm this is always positive for 0 < m < 1  

 

Low mist over ocean (MW) 

rs , s 

m , m 
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R = s Bs (1-m) + m Bm     using e-σ = 1 – σ and ~1-σ~1-a 

 

So difference of low mist over ocean  

       from clear sky over ocean is given by 

 

ΔR = - s m Bs + m Bm 

 

For s  ~ 1 

 

ΔR = - m Bs + m Bm = m [Bm - Bs ] 

 

So if [Bm - Bs ] < 0 then as m increases ΔR becomes more negative 

Low Mist over ocean (IRW) 
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ATMS Weighting Functions  
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Spectral regions used for remote sensing of the earth atmosphere and surface from 

satellites.   indicates emissivity, q denotes water vapour, and T represents temperature. 
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