Intro to High Spectral Resolution IR Measurements

Lectures in Madison 27 March 2013

Paul Menzel UW/CIMSS/AOS line broadening with pressure helps to explain weighting functions

line broadening with pressure helps to explain weighting functions

For a given water vapor spectral channel the weighting function depends on the amount of water vapor in the atmospheric column

CO2 is about the same everywhere, the weighting function for a given CO2 spectral channel is the same everywhere

Vibrational Bands

D. Tobin, UMBC

Rotational Lines

Earth emitted spectrum in CO2 sensitive 705 to 760 cm-1

Broad Band

High Spectral Resolution

Sampling over rotational bands

Infrared Radiance and Brightness Temperature Spectrum

Atmospheric Temperature Profile Retrieval

High-spectral measurements

 \rightarrow

Profiles at high-vertical resolution From E. Weisz

Regression Retrieval Summary

From E. Weisz

Dual-Regression Retrieval

From E. Weisz

Moisture Weighting Functions

High spectral resolution advanced sounder will have more and sharper weighting functions compared to current GOES sounder. Retrievals will have better vertical resolution.

Resolving absorption features in atmospheric windows enables detection of temperature inversions

Detection of inversions is critical for severe weather forecasting. Combined with improved low-level moisture depiction, key ingredients for night-time severe storm development can be monitored. 20

IASI detection of temperature inversion (black spectrum) VS clear ocean (red spectrum)

Ability to detect inversions disappears with broadband observations (> 3 cm-1)

Longwave window region

Longwave window region

Twisted Ribbon formed by CO₂ spectrum: Tropopause inversion causes On-line & off-line patterns to cross

Inferring surface properties with AIRS high spectral resolution data Barren region detection if T1086 < T981 $T(981 \text{ cm}^{-1})$ - $T(1086 \text{ cm}^{-1})$

Barren vs Water/Vegetated

from Tobin et al.

Mt Etna Ash cloud at 500 hPa

Mt Etna volcanic plume SO2 (left) from 1284-1345 Ash (right) from 832-900

Intro to Microwave and Split Window Moisture

Lectures in Madison 27 March 2013

Paul Menzel UW/CIMSS/AOS

Earth emitted spectra overlaid on Planck function envelopes

High resolution atmospheric absorption spectrum

MODIS IR Spectral Bands

High resolution atmospheric absorption spectrum

First order estimation of SST correcting for low level moisture

Moisture attenuation in atmospheric windows varies linearly with optical depth.

$$\tau_{\lambda} = e = 1 - k_{\lambda} u$$

For same atmosphere, deviation of brightness temperature from surface temperature is a linear function of absorbing power. Thus moisture corrected SST can inferred by using split window measurements and extrapolating to zero k_{λ}

$$T_s = T_{bw1} + [k_{w1} / (k_{w2} - k_{w1})] [T_{bw1} - T_{bw2}]$$

Moisture content of atmosphere inferred from slope of linear relation.

In the IRW - A is off H2O line and B is on H2O line

Radiation is governed by Planck's Law

$$c_2 / \lambda T$$

B(λ ,T) = $c_1 / \{ \lambda^5 [e -1] \}$

In microwave region $c_2/\lambda T \ll 1$ so that $c_2/\lambda T$ $e = 1 + c_2/\lambda T + second order$

And classical Rayleigh Jeans radiation equation emerges

 $\mathbf{B}_{\lambda}(\mathbf{T}) \approx [\mathbf{c}_1 / \mathbf{c}_2] [\mathbf{T} / \lambda^4]$

Radiance is linear function of brightness temperature.

ISCCP-DX 199207-199306 Mean Annual

ISCCP-D1 1992 Mean Annual

Microwave Form of RTE

$$\frac{\text{ave Form of RTE}}{I^{\text{sfc}} = \varepsilon_{\lambda} B_{\lambda}(T_{s}) \tau_{\lambda}(p_{s}) + (1-\varepsilon_{\lambda}) \tau_{\lambda}(p_{s}) \int_{0}^{p_{s}} B_{\lambda}(T(p)) \frac{\partial \tau'_{\lambda}(p)}{\partial \ln p} d\ln p$$

$$I_{\lambda} = \varepsilon_{\lambda} B_{\lambda}(T_{s}) \tau_{\lambda}(p_{s}) + (1-\varepsilon_{\lambda}) \tau_{\lambda}(p_{s}) \int_{0}^{p_{s}} B_{\lambda}(T(p)) \frac{\partial \tau'_{\lambda}(p)}{\partial \ln p} d\ln p$$

$$+ \int_{p_{s}}^{0} B_{\lambda}(T(p)) \frac{\partial \tau_{\lambda}(p)}{\partial \ln p} d\ln p$$

$$\frac{\text{atm}}{f_{\lambda}(p)} d\ln p$$

$$\frac{d}{d} \ln p$$

$$\frac{d}{d} \ln p$$

$$\frac{d}{d} \ln p$$

In the microwave region $c_2/\lambda T \ll 1$, so the Planck radiance is linearly proportional to the brightness temperature

$$B_{\lambda}(T) \approx [c_1 / c_2] [T / \lambda^4]$$

So

$$T_{b\lambda} = \epsilon_{\lambda} T_{s}(p_{s}) \tau_{\lambda}(p_{s}) + \int_{p_{s}}^{0} T(p) F_{\lambda}(p) \frac{\partial \tau_{\lambda}(p)}{\partial \ln p} d \ln p$$

where

$$F_{\lambda}(p) = \left\{ 1 + (1 - \varepsilon_{\lambda}) \left[\frac{\tau_{\lambda}(p_s)}{\tau_{\lambda}(p)} \right]^2 \right\}.$$

Transmittance

$$\tau(a,b) = \tau(b,a)$$

$$\tau(a,c) = \tau(a,b) * \tau(b,c)$$

Thus downwelling in terms of upwelling can be written

$$\tau'(p,ps) = \tau(ps,p) = \tau(ps,0) / \tau(p,0)$$

and

$$d\tau'(p,ps) = - d\tau(p,0) * \tau(ps,0) / [\tau(p,0)]^2$$

WAVELENGTH			FREQUENCY		WAVENUMBER
cm	μm	Å	Hz	GHz	cm⁻¹
10 ⁻⁵ Near Ultraviolet (l	0.1 JV)	1,000	3x10 ¹⁵		
4x10 ⁻⁵ Visible	0.4	4,000	7.5x10 ¹⁴		
7.5x10 ⁻⁵ Near Infrared (IR)	0.75	7,500	4x10 ¹⁴		13,333
2x10 ⁻³ Far Infrared (IR)	20	2x10⁵	1.5x10 ¹³		500
0.1 Microwave (MW)	10 ³		3x10 ¹¹	300	10

Microwave spectral bands

- 23.8 GHz dirty window H2O absorption
- 31.4 GHz window
- 60 GHz O2 sounding
- 120 GHz O2 sounding
- 183 GHz H2O sounding

23.8, 31.4, 50.3, 52.8, 53.6, 54.4, 54.9, 55.5, 57.3 (6 chs), 89.0 GHz

-270

-210

-230

0-

-10-

-20-

-30-

60N

30N

ΕQ

60S-

60E

120E

 $Tb = \mathbf{\varepsilon} s T s \mathbf{\tau} m + \mathbf{\varepsilon} m T m + \mathbf{\varepsilon} m \mathbf{r} s \mathbf{\tau} m T m$

 $Tb = \varepsilon Ts (1-\sigma m) + \sigma m Tm + \sigma m (1-\varepsilon s) (1-\sigma m) Tm \quad using e^{-\sigma} = 1 - \sigma$

So temperature difference of low moist over ocean from clear sky over ocean is given by

 $\Delta Tb = - \varepsilon s \sigma m Ts + \sigma m Tm + \sigma m (1-\varepsilon s) (1-\sigma m) Tm$

For $\varepsilon_s \sim 0.5$ and $T_s \sim T_m$ this is always positive for $0 < \sigma_m < 1$

 $R = \varepsilon Bs (1-\sigma m) + \sigma m Bm$ using $e^{-\sigma} = 1 - \sigma$ and $\tau \sim 1-\sigma \sim 1-a$

So difference of low mist over ocean from clear sky over ocean is given by

 $\Delta R = - \varepsilon_s \sigma_m B_s + \sigma_m B_m$

For $\boldsymbol{\varepsilon}s \sim 1$

 $\Delta \mathbf{R} = -\boldsymbol{\sigma}_{m} \mathbf{B}_{s} + \boldsymbol{\sigma}_{m} \mathbf{B}_{m} = \boldsymbol{\sigma}_{m} [\mathbf{B}_{m} - \mathbf{B}_{s}]$

So if $[B_m - B_s] < 0$ then as σ_m increases ΔR becomes more negative

53.6

AMSU

52.8

54.4 GHz

AMSU 54.4

54.9

55.5 GHz

ATMS Weighting Functions

Spectral regions used for remote sensing of the earth atmosphere and surface from satellites. ε indicates emissivity, q denotes water vapour, and T represents temperature.