The Impact of Geostationary Interferometric Infrared Sounder (GIIRS) Cloud Cleared Radiances on Typhoon forecasts: Maria (2018)

Ruoying Yin1,2 (\textit{yin_ruoying@163.com}), Wei Han1,2, Xinya Gong3, and Jun Li4

1 Numerical Weather Prediction Center, China Meteorological Administration, Beijing 100081, China
2 National Meteorological Center, China Meteorological Administration, Beijing 100081, China
3 National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China
4 Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison, Madison, WI 53706, U.S.A.

Abstract: Hyperspectral infrared (IR) sounder could provide detailed atmospheric temperature and moisture information with high vertical resolution that is essential for improving the forecast skills of numerical weather prediction. Generally, only clear sky radiances are used in model, because the observations from IR sounder are sensitive to clouds. A cloud-clearing (CC) method, which could remove cloud effect from IR cloudy field of view (FOV) and derive the cloud-cleared radiances (CCRs) or clear sky equivalent radiances, can be an alternative and effective technique to make full use of thermal information of FOV with partial cloud cover in data assimilation. Previous researchers have applied this technique to polar orbiting weather satellites (such as CrIS) and showed good results. This study focuses on Geostationary Interferometric Infrared Sounder (GIIRS) CCRs calculated from Advanced Geosynchronous Radiation Imager (AGRI) onboard FengYun-4A. The differences between the observation and simulation brightness temperature (O-B) indicate that CC method can effectively obtain the GIIRS CCRs for cloudy FOV, because it has consistent O-B with that from clear sky. To compare the impacts from assimilation of GIIRS original radiances and CCRs, three experiments are carried out on Typhoon Maria (2018) case using Global/Regional Assimilation and PreDiction System (GRAPES) 4D-Var. In the assimilation window, more GIIRS observations are used by assimilating GIIRS CCRs than by assimilating GIIRS original radiances. The typhoon track forecast also shows that the assimilation effect of GIIRS CCRs is improved compared with the original observations.

1. Intercomparison between GIIRS and AGRI

\begin{align*}
Rad_{\text{AGRI_mean}} &= \frac{\sum \text{Rad}(\text{pixel}) \cdot \text{weights}(\text{pixel})}{\sum \text{weights}(\text{pixel})} \\
Rad_{\text{AGRI_c1r}} &= \frac{\sum \text{Rad}(\text{pixel_c1r}) \cdot \text{weights}(\text{pixel_c1r})}{\sum \text{weights}(\text{pixel_c1r})} \\
\text{BT} &= \text{anti-Plank(radiance, EquivMid_wn)}
\end{align*}

2. Brightness temperature

\begin{align*}
\text{Rad}_{\text{GIIRS_conv}} &= \int \frac{\text{RAD}(v) \times SRF(v) dv}{\int \text{SRF}(v) dv} \\
\text{BT} &= \text{anti-Plank(radiance, EquivMid_wn)}
\end{align*}

3. CCRs data impacts on O-B

The number of assimilated data increased greatly

4. Impacts on Track forecasts

The positive impact from GIIRS CCRs on Typhoon Maria (2018) forecasts.

5. Summary

\begin{itemize}
 \item GIIRS CCRs can substantially increase the number of GIIRS radiance observations in assimilation system.
 \item GIIRS CCRs have larger influence on O-B for channels with weighting functions peaking at low levels.
 \item Assimilating GIIRS CCRs improve the Maria’s forecast results.
\end{itemize}

Reference

Acknowledgements

This study has been jointly supported by the National Natural Science Foundation of China (42075155) and National Key R&D Program of China(2019YFC1510400).