Assessment and assimilation of observations of the hyperspectral IR sounder IKFS-2 on board the Russian Meteor-M N2 satellite

Saint-Sauveur, QC, Canada, 4 Nov 2019
Outline

• Russian Earth Observation Satellites Program in a nutshell
• A brief introduction of the IKFS-2 hyperspectral infrared Fourier spectrometer
• Pre-processing of IKFS-2 data
• Assessment of accuracy of IKFS-2 data. Comparison with the accuracy of IASI data
• Selection of channels
• Assimilation of IKFS-2 data in 3D-Var data assimilation system.
Russian Earth Observation Satellites Program
(Federal Space Program for 2005-2015 and 2016-2025)

<table>
<thead>
<tr>
<th>System</th>
<th>Launches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geostationary meteorological system</td>
<td></td>
</tr>
<tr>
<td>HEO satellite system «Arctica»</td>
<td></td>
</tr>
<tr>
<td>Polar-orbiting meteorological system</td>
<td></td>
</tr>
<tr>
<td>R&D environmental satellites</td>
<td></td>
</tr>
<tr>
<td>Space weather satellites</td>
<td></td>
</tr>
</tbody>
</table>

Geostationary meteorological system
- **ELECTRO-L №1 (14.5°W)**: launched on January 20, 2011
- **ELECTRO-L №3 (165.8°E)**
- **ELECTRO-L №4 (14.5°W)**
- **ELECTRO-L №5**: launched on December 11, 2015

HEO satellite system «Arctica»
- **ARCTICA-M №1**: launched on
- **ARCTICA-M №2**: launched on
- **ARCTICA-M №3**: launched on
- **ARCTICA-M №4**: launched on
- **ARCTICA-M №5**: launched on

Polar-orbiting meteorological system
- **METEOR-M №1**: launched on September 17, 2009
- **METEOR-M №2**: launched on July 8, 2014 - lost at launch on November 28, 2017
- **METEOR-M №2-3**: launched on July 5, 2019
- **METEOR-M №2-4**: launched on

R&D environmental satellites
- **KANOPUS-V №1**: launched on July 22, 2012
- **KANOPUS-V №3,4**: launched on February 1, 2018
- **KANOPUS-V №5,6**: launched on December 27, 2018

Space weather satellites
- **RESURS-P №1**: launched on June 25, 2013
- **RESURS-P №2**: launched on December 26, 2014
- **RESURS-P №3**: launched on March 13, 2016
- **RESURS-P №4**: launched on
- **RESURS-P №5**: launched on
- **RESURS-PM №1**: launched on
- **RESURS-PM №2**: launched on
- **RESURS-PM №3**: launched on

Other satellites
- **IONOSPHERE-M №1,2**: launched on
- **IONOSPHERE-M №3,4**: launched on
Meteor-M polar orbiting satellites

- Both morning and afternoon orbits

Payload includes:

1. Microwave imager/sounder MTVZA-GY (29 channels)
2. Hyper-spectral infrared sounder IKFS-2 (2670 channels)
IKFS-2 Fourier spectrometer

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral range</td>
<td>5-15 µm (660 – 2000 cm⁻¹)</td>
</tr>
<tr>
<td>Spectral resolution (non-apodized)</td>
<td>0.4 cm⁻¹</td>
</tr>
<tr>
<td>Radiometric calibration error (λ = 11...12 µm, T = 280...300 K)</td>
<td>< 0.5 K</td>
</tr>
<tr>
<td>Radiometric noise NESR, [W m⁻² sr⁻¹ (cm⁻¹)⁻¹]</td>
<td>3.5·10⁻⁴ for λ = 6 µm</td>
</tr>
<tr>
<td></td>
<td>1.5·10⁻⁴ for λ = 13 µm</td>
</tr>
<tr>
<td></td>
<td>4.5·10⁻⁴ for λ = 15 µm</td>
</tr>
<tr>
<td>Instantaneous field of view (IFOV)</td>
<td>40 mrad</td>
</tr>
<tr>
<td>IFOV diameter at sub-satellite point</td>
<td>30 km</td>
</tr>
<tr>
<td>Swath width</td>
<td>1000...2500 km</td>
</tr>
<tr>
<td>Spatial sampling</td>
<td>60...110 km</td>
</tr>
<tr>
<td>IFG period (sweep + reverse time)</td>
<td>0.6 s</td>
</tr>
<tr>
<td>Data rate</td>
<td>580 kb/s</td>
</tr>
<tr>
<td>Mass</td>
<td>50 kg</td>
</tr>
<tr>
<td>Power consumption</td>
<td>50 W</td>
</tr>
</tbody>
</table>
Daily coverage of IKFS-2 data provided by METEOR-M № 2
Pre-processing of IKFS-2 data

- We consider spectral range 680-750 cm\(^{-1}\)
- Clear-sky observations only, both land and sea
- Radiative transfer model RTTOV v.12
- Bias correction: following Harris and Kelly (2001); cyclic updates of coefficients of linear correction with a 3-4 days memory.
- Rejection of too high channels (whose Jacobian has a significant part above the model’s top)
- Rejection of cloud-contaminated observations: following McNally and Watts (2003)
- Quality control: background check at the moment
IKFS-2 Jacobians (680-750 cm$^{-1}$ range)
Accuracy of IKFS-2 data. Comparison against IASI data.

- RTTOV was applied to NCEP GFS fields (0.5 deg. resolution, up to 10 hPa)
- IASI data were treated in the same way as IKFS-2 data (with the averaging over 4 IFOVs to get the comparable horizontal resolution with IKFS-2)
IKFS-minus-background statistics, K

Cloud filtered obs IKFS

Wavenumber (cm\(^{-1}\))
Cloud filtered obs IASI IFOV averaged

Wavenumber (cm⁻¹)
Channel selection

Principle: Select channels having the sharpest and most dissimilar Jacobians

Compute the *similarity matrix* whose entries are \(S(m,n) = \text{corr}(J(m), J(n)) \)

Algorithm:

1. Select the sharpest channel \(k \).
2. Remove channels \(n \) for which \(\text{corr}(J(k), J(n)) > 1 - \alpha \), where \(\alpha \sim 0.01 \sim 0.05 \).
3. Repeat steps 1—2 with channels not selected or removed from the list until there are no channels left.
Similarity matrix: 140 channels
Similarity matrix: 14 channels

IKFS-2 inter-channel similarity matrix
Assimilation of IKFS-2 data: setup

IKFS-2 observations were implemented into the 3D-VAR data assimilation system of HMC of Russia. Experiment length – 7 days, April 2019.

- Forecast model – SL-AV (Semi-Lagrangian model developed in HMC of Russia). Model top level – 5hPa.
- No other MW or IR radiances were assimilated
- Thinning – 200 km

We considered 3 configurations:

1. No IR observations assimilated
2. IKFS-2 observations assimilated with simple channels selection. We assimilate every third channel (~40 channels total)
3. IKFS observations assimilated using the similarity matrix. The selection of channels is independent at each point (~14 channels per pixel)
Assimilation of IKFS-2 data

Tmre. SH, 72 h forecast RMSE
Conclusions

- IKFS-2 is a hyper-spectral IR sounder on board Russian Meteor-M-series satellites
- IKFS-2 observations have in temperature sensitive channels (in the spectral range 680—750 cm\(^{-1}\)) a similar quality as compared with IASI data
- Assimilation of IKFS-2 observations into the 3D-Var based data assimilation scheme of the Hydrometcentre of Russia improves forecasts in the Southern Hemisphere. The effect in the Northern Hemisphere if neutral

References
