Evaluation of using measured SRFs in the radiative transfer for microwave sounders at ECMWF, UK Met Office, and DWD

David Ian Duncan1, Emma Turner2, Peter Weston1, Niels Bormann1, Robin Faulwetter3, Christina Köpken-Watts3

(1) ECMWF; (2) UK Met Office; (3) DWD *David.Duncan@ecmwf.int

1. Introduction
Spectral response function (SRF) data were measured for three currently operational microwave sounder instruments before launch. RTTOV coefficients were calculated for the following sounders:
- AMSU-A on NOAA-19
- ATMS on SNPP
- ATMS on NOAA-20

To evaluate the new coefficients and whether measurement simulation is improved, O-B statistics are examined from three NWP centres. For all centres, ATMS observations are used after 3x3 averaging. All statistics use brightness temperatures (SDRs), excepting SNPP ATMS from UKMO, which uses antenna temperatures (TDRs).

2. Measured vs. top hat SRFs
- Biggest shifts for NOAA-19 AMSU-A ch. 13 and 14
- Humidity channels for ATMS have subtle response shifts within bands (see ch. 18 and 20)
- Small differences seen for surface-sensitive channels

3. O-B statistics from 3 centres
Prior to bias correction, O-Bs are compared with "top hat" (control) and measured SRFs across three NWP centres. Data are limited to ocean-only and clear-sky, but selection was not harmonised between centres.
- Similar shifts in bias are observed between ECMWF and UKMO for most channels
- Smaller changes in bias and std(O-B) at most channels in DWD assimilation experiment
- Differences in the biases for the three centres indicate uncertainty due to model biases in these statistics

4. Assimilation experiments

Separate assimilation experiments were conducted in the ECMWF system (CY46R1) for one month (Dec. 2018), and assimilation experiments were also carried out by DWD. ECMWF's assimilation with NOAA-19 gave stratospheric degradation, so we focus on assimilation with both ATMSs.
- Insignificant medium range forecast impact, albeit for a short assimilation trial
- Fits to background significantly improved for most ATMS channels in the extra-tropics
- ATMS ch. 9 is an outlier in the Tropics, caused by new scan position biases (see panel 3) and connected to degradation to sondes and GPS-RO fits
- Background fits to other observations show mixed results but degraded fits near the tropopause

Scan biases before bias correction
Biases by scan position for NOAA-20 ch. 9, for top hat and measured SRFs, as a function of latitude band
- Differences between centres and across latitudes
- Some channels have Tropics vs. mid-latitudes shift, associated with tropopause sensitivity
- Subtle features like a more abrupt shift at scan edge causes degraded fits for ATMS ch. 9 in the Tropics

Summary and conclusions
- The use of measured SRFs within RTTOV for 3 microwave sounders has been appraised in 3 NWP models
- Measured SRFs should permit better forward modelling of radiances – this is confirmed through O-B statistics for many channels considered, with some consistency in the results from the 3 centres
- However, changes compared to using idealised "top hat" functions were mostly small, and slight degradations were also apparent for some channels (e.g., ATMS ch. 9), and these warrant further investigation
- Forecast impacts in assimilation experiments were mostly small (except for mean stratospheric changes from NOAA-19)
- Note SNPP results should be re-evaluated following the change in the reflector emissivity processing (implemented 15 Oct 2019)
- Measured SRFs are essential for any potential RFI investigations, and this aspect is not covered here

Acknowledgements: David is funded through the EUMETSAT Research Fellowship. Thanks to NOAA NESDIS STAR and NASA GSFC for measuring and providing the SRF data upon which this study rests, with ATMS data publicly available at https://www.star.nesdis.noaa.gov/jps/ATMS.php.