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Introduction

Incident radiance is partially polarized by reflection from the scene select mirror (SSM);
there is a small degree of polarization in the IR for uncoated gold mirrors

The CrlS sensor utilizes a “barrel-roll” scene select mirror that rotates about an axis that is
45° from the mirror normal, preserving the angle of incidence at the mirror and optical
axis for all calibration and scene views.

However, the orientation of the polarization axis of the scene select mirror changes with
scene mirror rotation

When coupled with the polarization sensitivity of the sensor, this produces a radiometric
modulation of the detected signal that is dependent on the rotation angle of the scene
select mirror and creates a calibration error

The SSM and sensor effectively act as a polarizer and analyzer pair

Total signal intensity generated for an arbitrary, unpolarized scene or calibration radiance

observed at a scene selection mirror angle 6 and a sensor polarization axis at an angle a:
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Which can be simplified to:

Cs= (L5 — By )” + B! +(L BSSM)PrP;rtCOSZ(5 a)+C,

inst

The polarization induced calibration error (E) can be derived by substituting the
expression above into the complex calibration equation:
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Pitch Maneuver

Both SNPP and NOAA-20 completed a pitch maneuver (2012-02-20, 2018-01-31,
respectively). During the maneuver all CrlS cross-track (ES) and deep space cal (DS) FORs
and FOVs viewed deep space

This represents the only existing end-to-end measurements that can be used to derive
the polarization parameters for CrlS

The raw and calibrated signals from the pitch maneuver show clear polarization effects
and are very well represented by the theoretical model

a, the effective polarizer angle of the sensor, has band dependence (aft-optic dichroics)
and a small FOV dependence (slightly different optical paths through the sensor).

p.p, the combined polarization of the SSM (p) and sensor (p,), is wavenumber
dependent, and has a small FOV dependence

The effective polarization angle (8) of the scene mirror is FOV dependent

Due to optical coating differences between SNPP and NOAA-20, they have slightly
different polarization parameters
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Figure 8. The SNPP spacecraft pitch-over maneuver enabling VIIRS to scan deep space. Motion of the SNPP spacecraft is counter-
clockwise in this figure. On the sunlit portion of the orbit, the VIIRS instrument is in its nominal Earth viewing geometry with
the spacecraft in its ascending orbit.

The maneuver begins with a slight pitch down of the nose of the SNPP spacecraft.

The nose of the SNPP spacecraft in the process of pitching up.

The SNPP spacecraft is pitched completely away from viewing the Earth on the dark side of the orbit, and the VIIRS instrument
is oriented to view deep space.

The pitch maneuver continues to return the SNPP spacecraft to nominal Earth viewing mode.

The SNPP spacecraft has returned to its nominal Earth viewing geometry.
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Polarization Parameters Derived from the Pitch Maneuver
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LW correction peaks near FOR 6. FOR 6 shown above for all FOVs
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implemented in the next releases of both the NASA and NOAA processing

Polarization correction parameters were derived independently for SNPP and NOAA-20 using pitch

maneuver data

The correction in the LW and MW bands is relatively small; the largest correction (expressed in BT) is in
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The SNPP correction is slightly larger than the correction for NOAA-20

Polarization correction of both CrlIS sensors results in better agreement between the two sensors (using

AIRS or IASI as the intermediate reference)
Polarization correction reduces CrIS inter-FOV variability for NOAA-20 and SNPP
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Polarization correction improves the symmetry of the CrIS observations with respect to nadir




