Radiative Transfer-Based Effective Emissivity (after Nalli et al. 2018a,b)

The directional emissivity of a terrestrial surface is defined as

\[e_r(\Theta, \Theta') = \frac{R_r(\Theta')}{R_r(\Theta)} \]

where the surface-emitted radiance (numerator) is separated from the surface-reflecting radiance (as measured by a detector) by subtracting the surface-reflectance radiance

\[R_r(\Theta') = \int \rho_1(\nu) (1 - \rho_1(\nu)) d\nu \]

The conical-directional reflectance for non-isotropic incident radiation (Nicodemus et al. 1977) for the sea surface reflectance may be written as

\[R_r(\Theta') = \rho_1(\Theta) \sum_{\nu} \rho_1(\nu) \int \frac{(1 - \rho_1(\nu)) f(\Theta', \Theta) d\nu}{\Theta} \]

which, from the mean value theorem is equivalent to

\[R_r(\Theta') = \rho_1(\Theta) \sum_{\nu} \rho_1(\nu) \int f(\Theta', \Theta) d\nu \]

The conical-directional reflectance is given by

\[R_r(\Theta') = \rho_1(\Theta) \sum_{\nu} \rho_1(\nu) \int f(\Theta', \Theta) d\nu \]

where \(\Theta = \Theta(\nu) \) is a diffusivity angle, thus allowing simplification of the surface-reflectance radiance RTE as

\[R_r(\Theta') = \rho_1(\Theta) \sum_{\nu} \rho_1(\nu) \int f(\Theta', \Theta) d\nu \]

\[\Theta = \Theta(\nu) \]

where the effective-emissivity (with temperature dependence) may be written as

\[\epsilon_r(\Theta, \Theta') = \frac{R_r(\Theta')}{R_r(\Theta)} \]

Potential SARTA Implementation

- We plan to extend this effort toward an upgrade of the ocean emissivity used by SARTA.
- We will explore implementing the IRSSE model within an ocean experimental SARTA version in collaboration with UMD.
- SARTA implementation would require modification of the “Reflected Downwelling Thermal Radiance” term.
- According to Strow et al. (2003), an empirical formulation is used based on Sunstone and Strow (1997) that may feature further improvements.
- It should be reasonably straightforward to conduct a test replacing this Lambertian representation within SARTA for the effective-emissivity (with temperature dependence) upgrade.

Summary and Future Work

- Ocean surface emissivity depends on wavenumber, zenith angle, surface wind speed, and surface temperature.
- Temperature dependence arises from changes in the IR radiative indices.
- The model is well-constrained at 1-3 km model levels.
- We will continue our collaboration with UW/CIMSS and JSTAR Cal/Val Program.
- We plan to have the effective-emissivity (with temperature dependence) upgrade.
- We will continue our collaboration with UMD and JSTAR Cal/Val Program, including cold-water cruises.

Acknowledgements

- This work is supported by a NASA Phase 1 Small Business Innovation Research (SBIR) grant (NNX16AI22C) and the NASA Joint Polar System Program (Evan Smith and Jim Prior).
- Further work is supported by the U.S. National Science Foundation (NSF), Office of Polar Programs.
- Further work is supported by the Joint Polar System Program, Div. of Polar Programs, NSF.
- Further work is supported by the DOE National Energy Technology Laboratory (NETL).
- Further work is supported by the NASA’s 2020-2021 Earth Observing System Early Career Fellowship Program.
- Further work is supported by the NASA-JPL Applied Science Program.
- Further work is supported by the NASA-GSFC Applied Science Program.
- Further work is supported by the NASA’s Project Phase 1 Small Business Innovation Research (SBIR) grants.
- Further work is supported by the NASA’s Project Phase 1 Small Business Innovation Research (SBIR) grants.
- Further work is supported by the NASA’s Project Phase 1 Small Business Innovation Research (SBIR) grants.

Selected References