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Part 1: Comparison among three CrIS Cloud-Clearing Radiance (CCR) products
Cloud-Clearing Methodology: The observed radiance at channel i in field of view (FOV) j with K cloud types can be expressed as

qu

It we assume R.,. and Rcld are the same in all the FOVs in a single CrlS field of regard (FOR), after eliminating Rcld, the cloud-cleared radiance Récr can be written as,

e = R1+n1 ><(R1 R2)+n2 ><(R1 - X R3)+ ...... +N;, (Rl-Rk+1), N, are the cloud-clearing parameters which depend on cloud fraction only (Chahine (1977) and Joiner and Rokke (2000)). n; can be estimated
using a set of cloud sounding channels to solve an over-estimated problem in a least-square sense. There have generally been three cloud-clearing methods developed for CrIS, which are being compared here.
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Part 2: All-sky SEVIRI radiance assimilation at NCEP

Introduction: This work is to extend the IASI all-sky radiance assimilation at NCEP/EMC (5p.03) to geostationary IR imagers such as SEVIRI or GOES-16 in the future in the NCEP global data assimilation system.
Cloudy radiance simulation is conducted with Community Radiative Transfer Model (CRTM) that includes profiles for liquid-water content and ice-water content from the GFS model. Statistical analysis of
observation minus background departures (OmF) are evaluated for all 8 SEVIRI channels using data samples collected over oceans from 17 days in August, 2017.

OmF Evaluation Cloud Cover from GFS or BUFR Single Observation Analysis
The cloud effect (CA) is defined as the average of the absolute departures of the observed Cloud fraction profile is required by the CRTM to simulate all- An analysis with a single cloudy radiance
and background BTs from the clear-sky BT (Okamoto et al., 2014). Fig. 10a-c show density | | Sky cloudy radiances. It is diagnosed from the GFS model then observation over sea is conducted to demonstrate
scatter plots of the OmF vs CA, Fig. 11a-c are the OmF mean (bias) and standard deviation | | the averaging overlapping method is used to compute the how the cloudy radiance affects the temperature (t),
(stdev, or SD) vs CA and Fig. 12a-c show PDFs of normalized OmF. They are at the cloud cover(Fig.13a). The SEVASR BUFR product contains cloud | humidity (q) and cloud liquid (ql) and cloud ice (qi)
channels with wave lengths of 6.2um (chn2 in the left column), 7.3um (chn3 in the middle | | cover (Fig.13b). The difference between the two cloud covers fields. Fig. 16 shows the C]|/QI, t, g and diaghosed
column) and 10.8um (chn6 in the right column) which are sensitive to upper, middle- (Fig.14) causes important differences in the OmF statistics cloud fraction (cldfrc) backgrounds (solid) and
tropospheric humidity and surface temperature, respectively. (Fig.15a-d). analyses (dashed). Fig.17 are their analysis
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