New model changes

Since ITSC-20, ECMWF implemented three substantial upgrades of its Integrated Forecasting System (IFS).

The three upgrades (41R2, 43R1 and 43R3) had a significant positive impact on forecast skill in the medium range and monthly forecasts.

Resolution increase:
• New cubed-octahedral grid
• The High resolution system upgraded to higher resolution T255-9km (41R2)
• The Ensembles upgraded to a higher resolution T255-9km (days 1-15) and T319-32km (days 16-46) (41R2)
• Increased horizontal resolutions for the HRES 4DVAR andEDA (41R2)
• The Ocean model (NEMO) resolution increased to 0.25° and 75 levels (43R1)

Observations:
• Activation of E-7.5 humidity sounding channels over ocean and extend all-sky assimilation to arctic land surfaces (41R2)
• Situation dependent observation errors for AMSU-A (41R2)
• Improved IASI aerosol screening (41R2)
• 25% increase of GSPRO observation errors (41R2)
• Update of RTTOV coefficient file for microwave instruments (41R2)
• AIRS-S1, AIRS-S2 assimilation (41R2)
• Asimilation of aircraft humidity (41R2)
• Viewing geometry (staircase path) fully taken into account when simulating radiances from clear-sky sounding (41R2) – See presentation 2.03 by N. Bormann
• Update observation error covariance for IASI and QDR (43R1)
• New channel selection for CRIS (115 channels instead of 78) (43R1). See poster 3p.01 by R. Eremeeva
• Update of aerosol detection scheme for IASI, AIRS and CRIS to improve the aerosol backscatter correction (43R1)
• Assimilation of snowfall from the NEXTRAD RADAR network over the USA (43R1)
• Activation of new humidity sounding saphir and GMI (43R1)
• Activation of 118 GHz channels over land from MWHS-2 instrument on-board FY-3C (43R1) – See poster 3p.04 by H. Lawrence
• Harmonised data usage over land and sea for microwave sounders (43R3) – See poster 10p.04 by N. Bormann
• Improved quality control for radiocloud occurrences and radiosonde data (43R3)
• Improved screening of infrared observations for anomalously high atmospheric concentrations of hydrogen cyanide (HCN) from wildfires (43R3)

Data assimilation changes:
• EDA cycling its own background errors (41R2)
• Compute scale-dependent hybrid background error covariance (48) by adding samples from latest EDA forecast to static climatological B with increasing weight of today’s EDA for smaller wavelengths (41R2)
• Improved calculation of humidity saturation for very cold temperatures (41R2)
• Update of SST perturbations used in the EDA (43R1)
• Re-activation of the stratosphere domain significant background constraint in the 4DVAR (43R1)
• New Ocean analysis/analysis (48S5) (43R1)
• Improved assimilation of screen level TROPOs observations in the land surface analysis (43R1)
• Improved EDA derived background estimates used in the 4DVAR (43R1)
• Improved humidity background error variance directly from the EDA (43R1)
• Revised waveform filtering of background error variances and revised quality control of dropsonde wind observations in 4DVAR to improve tropical cyclone structures (43R3)

Model changes:
• Improved representation of radiation-surface interaction (41R2)
• Improved free air physics (41R2)
• Improved parcel perturbation for deep convection (41R2)
• Inclusion of surface-lying for long-wave radiation interactions (41R2)
• Improved solar zenith angle calculation (41R2)
• Improvements of linear physics used in the data assimilation for gravity wave drag (41R2)
• Usage of new CAMS ozone climatology (43R1)
• Changes to boundary layer cloud for marine strato-cumulus at high latitudes (43R1)
• Modelling of surface coupling for 2 m temperature (43R1)
• New, more efficient and improved radiation scheme (43R2)
• New aerosol climatology based on ‘true’ CAMS aerosol re-analysis including dependence on relative humidity (43R3)
• Increased super-cooled liquid water at colder temperatures (down to -38C) from the convection scheme (43R3)

Microwave sounders/imager usage

Table 1: Assimilated microwave soundings/imaging channels

<table>
<thead>
<tr>
<th>Microwave sounders</th>
<th>AMSU-A</th>
<th>AMSU-B</th>
<th>NOAA-15</th>
<th>NOAA-18</th>
<th>NOAA-19</th>
<th>Himawari-8 CSR</th>
<th>Himawari-8 MHS</th>
<th>Himawari-8 CSR</th>
<th>Himawari-8 MHS</th>
<th>Himawari-8 CSR</th>
<th>Himawari-8 MHS</th>
<th>Himawari-8 CSR</th>
<th>Himawari-8 MHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metop-A</td>
<td></td>
</tr>
<tr>
<td>Metop-B</td>
<td></td>
</tr>
<tr>
<td>Metop-C</td>
<td></td>
</tr>
<tr>
<td>Metop-D</td>
<td></td>
</tr>
<tr>
<td>Metop-F</td>
<td></td>
</tr>
<tr>
<td>Himawari-8 MHS</td>
<td></td>
</tr>
<tr>
<td>Himawari-8 CSR</td>
<td></td>
</tr>
</tbody>
</table>

Hyper-spectral infrared sounders usage

Table 2: Number of channels used

<table>
<thead>
<tr>
<th>Hyper-spectral sounders</th>
<th>GPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HySPAN</td>
<td></td>
</tr>
<tr>
<td>AIRS</td>
<td></td>
</tr>
<tr>
<td>FY-3B</td>
<td></td>
</tr>
<tr>
<td>FY-3C</td>
<td></td>
</tr>
<tr>
<td>FY-3D</td>
<td></td>
</tr>
<tr>
<td>FY-3E (from FY-3D)</td>
<td></td>
</tr>
</tbody>
</table>

Geostationary radiances usage

Table 3: Assimilated geostationary radiances

<table>
<thead>
<tr>
<th>Geostationary radiances</th>
<th>SEVIRI</th>
<th>GOES Imager</th>
<th>AIRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meteosat-10/11 (SEVIRI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meteosat-8 (SEVIRI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOES-13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Himawari-8 MHS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyclone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.9 and 7.3 micron (7W)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2 and 7.3 micron (7W)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Slant-path radiative transfer for sounder radiances

- Shunted satellite geometry fully taken into account in the simulation and assimilation of clear sky radiances from sounders.
- Significant improvements in the simulation of brightness temperatures from model fields. This is most noticeable for large zenith angles for upper tropospheric and stratospheric channels.
- Slant-path RT leads to better agreement with observations.
- Overall positive impact especially in the on the stratospheric and at short ranges.
- Normalised differences in standard deviation of vector wind analysis increments (7±4°) when compared with experiment and the control

Main upcoming satellite changes (cycle 45R1)

The upcoming ECMWF model cycle 45R1 is expected to be implemented in Q1 2018 and will include a number of significant data assimilation changes:

- Improved radiator transfer model RTTOV-12 (see poster 1p.05 by C. Lupu)
- Improved treatment of biases (Constrained VarBC) for AMSUA channel 14 and AMT channel 15 (see presentation 12.02 by W. Han)
- Improved radiance over land (see presentation 10.01 by R. Eremeeva)
- Improved usage of all sky radiances in coastal areas
- Use of OIBG-MHWS5

Acknowledgments

ECMWF gratefully acknowledges the invaluable funding from EUMETSAT and ESA and collaboration with other agencies, notably CNR, JMA, NOAA and NASA. Thanks to Andrew Brown and Simon Wilter for the help with the poster.