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Error estimation procedure

It is assumed that the sonde profile is on a “fine” grid with 278 levels and the model’s forecast, generated with the Met Office Unified Model, is on a “coarse” grid with 70 levels (see Figure 1). Let ym and ys

be the brightness temperature vectors generated by the RTTOV fast radiative transfer code when the xm model profile interpolated on the fine grid and the xs sonde profile are given as input, H the forward 

model (or observation) operator, H its derivative with respect to the state vector (or jacobian), ε a (random) error vector on the fine grid, δ a (random) error vector on the coarse grid, W a linear interpolation 

matrix and εintp = Wzt – xt the vertical interpolation error, where xt and zt are the true state vector on the fine and the coarse grid, respectively. We can then write

Our goal is to estimate Sδy, the total error covariance of δy, given by

where Bm is the forecast error covariance on the coarse grid, Rm is the sonde error covariance on the fine grid and Sintp is the vertical interpolation error covariance, discussed below. 
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Introduction

Robust statistical estimations of numerical weather prediction model uncertainties are of 

crucial importance for maximizing the impact of the data that is operationally assimilated, 

which is mainly composed of satellite radiance measurements. One of the most direct 

ways to assess these errors is to compare short-range model forecasts with high-quality 

radiosonde data such as those from the GCOS Reference Upper-Air Network (GRUAN). 

The Met Office, as part of its activities within the Gap Analysis for Integrated Atmospheric 

ECV CLImate Monitoring (GAIA-CLIM) EU-funded project, have been developing the 

GRUAN Processor designed to compare simulated satellite measurements from model 

data against simulated radiances calculated from GRUAN sonde data through the use of 

the RTTOV fast radiative transfer model. The Processor also aims to quantify all known 

sources of uncertainties associated with sonde measurements so as to assess the 

statistical significance of their departures from simulated satellite soundings. To account 

for the total uncertainty on the departures, however, we also need to include contributions 

from forecast uncertainty and use of different vertical grids, as discussed here.

Summary and future work

- We have described a robust procedure to assess forecast error uncertainty using reference sonde profiles

- The analysis performed on temperature errors needs to be repeated for humidity and surface parameter errors

- Total uncertainty is sum of single parts, assuming forecast errors of components are mutually uncorrelated

- Accurate specification of sonde errors also needs to be added to the total error budget

- Validity of used forecast errors can then be tested using an ensemble of forecast minus sonde profile departures 
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Figure 1 Sonde and model’s forecast temperature (left panel) and humidity (right panel) profiles at Lindenberg on 9 

March 2017 2200 UTC 
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Estimating forecast errors on finer grids

A “natural” guess for Bf is                    , but this leads to a singular matrix. It 

is, however, possible to re-condition it by imposing that its correlation matrix 

has a unit matrix in the diagonal, as this is not guaranteed by the 

interpolation. Figure 2 shows Cc the temperature forecast error correlation 

matrix on model levels and on sonde levels after reconditioning, as well as 

the positive eigenvalues of these matrices. The vertical profile of 

temperature forecast error standard deviations on the sonde grid (Figure 3) 

is determined from the interpolation of that on the model grid, as                .

Finally, we get
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Figure 2 Temperature forecast error correlation matrix on model levels (or coarse grid, left panel); Eigenvalues of the temperature forecast error 

correlation matrix (middle panel) on the coarse grid (blue circles), on the fine grid after interpolation from the coarse grid (positive  eigenvalues 

only, green circles) and on the fine grid after reconditioning (red circles); Temperature forecast error correlation matrix  on the fine grid, after 

reconditioning (right panel).

Figure 3 Temperature forecast error standard deviation profile on the model grid (blue circles) and interpolated 

on the sonde grid (red solid line, left panel); Temperature interpolation error standard deviation profile on the 

sonde grid (blue solid line) and (for ease of comparison) temperature forecast error standard deviation profile

on the sonde grid (right panel)

Figure 4 Temperature jacobian for channel 5 (52.8 GHz, same as AMSU-A 

channel 4) of the Advanced Technology Microwave Sounder (ATMS, top panel); 

temperature component of the interpolation error standard deviation [K] (blue 

solid line) and temperature forecast error in radiance space [K] (bottom panel) 

for ATMS channels. 

Interpolation error

To estimate Sintp, the covariance of interpolation error (see Figure 3) we need 

an estimate ẑt of zt given xt. We can use W*, the Moore-Penrose pseudo-

inverse of W (see Rodgers, 2000, his section 10.3), given by 

where Bf is the forecast error covariance on the fine grid estimated as 

discussed above. Note that ẑt is a “consistent” estimate of zt as we get ẑt = zt

when xt = Wzt.

In this way we can write 
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Errors in observation space

The interpolation error covariance in observation space is then calculated as HSintpH
T. If we assume that forecast errors 

of the components of the state vector are mutually uncorrelated, total uncertainty is the sum of the uncertainty of the 

single components. Figure 4 shows the temperature jacobian for ATMS channel 5 and the resulting interpolation error for 

temperature. As hoped, the interpolation error for temperature has magnitude that is much smaller than that of 

temperature forecast error in radiance space.
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