Implementation of a real-time Level 2 SEVIRI processor for the simultaneous physical retrieval of surface temperature and emissivity at global scale

Guido Masiello, Carmine Serio, Sara Venafra, Giuliano Liuzzi, Maria Grazia Blasi
School of Engineering, University of Basilicata, Potenza, Italy

RATIONALE
The real-time continuous monitoring of surface properties is very important for different applications, like risk management, natural hazards and land surveillance. Geostationary platforms allow to provide series of satellite observations with a very high temporal resolution, able to resolve the diurnal cycle and to catch seasonal variability. In this work the development of a very fast multi-temporal and multi-spectral Level 2 processor is described. The processor exploits SEVIRI (Spinning Enhanced Visible and Infrared Imager) infrared radiances (8.7, 9.7, 10.8 and 12 µm) to retrieve surface temperature and emissivity simultaneously by means of a fast forward radiative transfer model (o-SEVIRI) and an inversion procedure based on the Kalman filter approach. Further details on the adopted methodology are reported in recent works (Masiello et al. 2013 doi:10.5194/amt-6-3693-2013), together with validation exercises at regional and global scale both against in situ, analysis and equivalent satellite observations (Masiello et al. 2015 doi:10.5194/amt-8-2981-2015, Blasi et al. 2016 doi: 10.3369/letter.2016.13.01). The software is capable to run in real-time also thanks to a code optimization and the usage of parallel computation. In detail, a single SEVIRI full disk slot time (15 minutes) can be processed in about 16 minutes exploiting 20 threads, providing surface temperature and emissivity estimations on land surface.

METHODOLOGY
Forward Model: o-SEVIRI, pseudo-monochromatic radiative transfer model

\[R(\theta, \phi, \lambda) = \chi (\theta, \phi, \lambda) \delta(\theta, \phi, \lambda) + \frac{1}{\pi} \int_0^{2\pi} \int_0^\pi B(\theta, \phi, \lambda) \cos \psi \, d\psi \, d\theta \]

New forward model: PCA (Principal Component Analysis) based approach to Radiative Transfer Model

\[R_{\text{PCA}} = \sum_{i=1}^{n} \alpha_i S_i \]

Inverse Model: S-SEVIRI, Kalman filter Persistence Model for the simultaneous retrieval of surface temperature and emissivity

\[R = f(\tau, \psi, \phi, \lambda)|_{\text{observation equation}} \]

\[u = W \cdot \tau + c \]

\[\tau_{n+1} = \Psi(\tau_n) + \mathcal{E} \quad \text{forecast at time } t \]

\[\Psi(\tau) = \tau_{n} + \mathcal{E} \]

\[\mathcal{E} = \text{covariance of } \tau \]

Results on Land Surface

The SEVIRI instrument for the retrieval of \(T_r \) and emissivity (\(\varepsilon \)) is used to identify land cover type channels.

Results on Land Surface

- **Full Disk (VZA=70°)**: Total 3,545,871 pixels for Land
 - 3,488,320 Land pixels
 - 57,543 in Land Water pixels

- **Monthly Map (November 2007)** of KF SEVIRI surface temperature

Results on Sea Surface

- **Monthly Map (November 2007)** of KF SEVIRI surface temperature

Application on the Mediterranean basin (Sea Skin Temperature for the years 2013-2016)

- **Monthly average data are freely available**

- **New web portal is coming** with simplified data request enabling downloading of the full time resolution results

Computational Performances

- A single SEVIRI FO (for land pixels) takes about 30 minutes exploiting 8 threads and considering all pixels as clear sky (Fort Compiler). For the Mediterranean area (232,838 pixels) it takes about 15 minutes exploiting one thread and considering all pixels as clear sky. These performances make this first fully based physical scheme very attractive for real-time applications.

CONCLUSIONS & FUTURE DEVELOPMENTS

- The physical emissivity retrieval of surface temperature and test procedure have been applied to the SEVIRI full disk;

- The model has been improved and now it is about 7 times faster than previous versions;

- The algorithm has been adopted for land, ocean and sea and land desert areas have been integrated and tested on TIRPA 16-5AM virtual machines for full disk retrieval of surface temperature and emissivity;

- The emissivity contrast index (ECI) is calculated between land, sea and desert vegetation;

- There is a need to investigate ECI-NDVI synergy. In perspective this could improve SEVIRI capability to monitor vegetation stress and detect changes because of the global warming.

REFERENCES

