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Expected Increase in HPC requirements and Data Volume

(for ECMWEF NWP center: using currently 5-10% of satellite data)
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GOS Trends:

- New Players in GOS (international, private, ..)
- New Sensors (higher resolutions,..)

- New technologies (small sats, etc)

- Emergence of New GOS (loT, etc)

- Significant Increase in data volume/diversity
- Budget and HPC Constraints
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NOAA Data Volume graph, Courtesy Steve Del Greco & Ken Casey, NOAA/ NCEI (via Jeff de La Beaujardiere)
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Why Al?

e Al applied successfully in fields with similar traits as
Environmental data & NWP/SA: (1) # obs. systems
to analyze/assimilate/fuse and (2) predict behavior

 Medical field (Watson Project): Scan Image Analysis, Cancer
detection, heart Sound analysis

* In finance: Algorithmic Trading, market data analysis,
portfolio management

* In Music: Composing any style by learning from huge
database & analyzing unique combinations.

e Self-Driving Transportation Devices: Fusion of Multiple
Observing Systems for situational awareness

 We believe Environmental data exploitation (remote
sensing, data assimilation and perhaps forecasting),
presents a viable candidate for Al application.

* This presentation is meant to present a few
examples to convey that the potential is significant.

Neural Network vs Deep Learning (Al)
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Exploring Al for Remote Sensing, NWP &
Situational Awareness (SA). Status
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Not Tested. Unknown level of confidence Not tested. Reasonable level of confidence Tested or not: Moderate level of confidence Tested. High level of confidence
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How to assess that Al-based
output (Satellite Analysis) is
valid?

(1) Assessing quality by
comparing against
independent analyses

(2) Assessing Radiometric
Fitting of Analysis

(3) Assessing analysis spatial
coherence

(4) Assessing inter-
parameters correlations

MIIDAPS-AI outputs (TPW) Usmg SNPP/ATMS Real Data

Google TensorFlow Tool used for MIIDAPS-AI

Reference source of TPW: ECMWF Analy5|s

MIIDAPS-AI
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Processing Time fora full ~5 seconds ~ 2 hours
day data. A single sensor

(ATMS). Excluding 1/0
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ECMWEF used as independent reference set. Clear and cloudy points. All

surfaces included.




(2) Convergence Assessment (CrlS Case)
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Al-based analysis is fed to CRTM and then simulation is
compared to CrlS radiances



Temperature

Temperature Power Spectrum
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(3) Spatial Coherence Assessment

Water Vapor

Specific Humidity Power Spectrum
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Water vapor fields and Temperature fields generated by Al (and satellite data) are consistent
with those from ECMWEF, except for high variability scales (as expected)

Spatial coherence — Global Temperature and Water Vapor 1D power spectrum from ATMS and ECMWF




(4) Inter-Parameters Correlation Assessment |

Al-Based Algorithm vs ECMWF — ocean
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Water vapor, temperature and
Skin temperature generated by
Al applied to ATMS are
correlated with each otherin a
similar way that those same
parameters obtained from an
NWP analysis, are.



Can Al Be Used as Forward Operator?

e — CRTM/AI Chan21
Status: T aa p— CRTM Chan21

- EOF of Geoph Data Used as Inputs
- Only clear sky was tested
- Only surface-blind channel tested

- ATMS tested. All chanpalstagathac
- ~“million points used: Variational N-dVAR

Measured Radiances

- Jacobians need to be

- Quick test: CRTM use

Potential Advantages:

- Multiple Orders of m

- Allows using thisin a
setting (inversion, DA

- Isjust an extension o
implementation of tr
(Line-By-Line Models

- Does not Replace LB
training just like CRT

Next Steps:

- Use LBL as training

- Assess in variational setting Processing Time for a full day data. A single <1 second ~ 1.3 hours
. E i
- Extend (cloudy, surface, IR, Jacob., etc) sensor channel(ATMS). Excluding 1/0
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Does Al Have Predictive Applications?

Timestep T=-1 (past) Timestep T=0 (present) Timestep T=1 (future)

This simple model has potential to:

(1) Compute AMV from tracers ( at t=0)
based on spatial AND vertical tracing

(2) Correcting short-term forecast to
adjust systematic errors and

* ? 7 I displacements (t=1 or 2, 3,...)
(3) NWP (t=N)
@ L 4 ® L
Wind Questions:
U
o Can we predict AMYV center of box
Y at T=0 timestep using the ~ 100
———————— @-----F-f-----—--- Q- Inputs parameters?
3x3x3x2xN box of parameters: Can we improve prediction at Time
! . Vertical x Spatial x Temporal dimensions x Nparameters step 1 if we set a target to match?




Correcting TPW Forecasting with Al?

ECMWEF vs Al-corrected 6h fcst valid @ECMWEF analysis time ECMWEF vs 6 hr frcst valid @ECMWEF analysis time.
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Conclusions

Lrmeny oF S

¢ Increase in number, diversity and sources of global observing systems (GOS) including private sector. This presents unprecedented (and
welcome) added resiliency and quality of the GOS. However this presents challenges: Cost and infrastructure to leverage/exploit them.

&/ 3
e A poticatSs

+» Computing constraints, perhaps require us to explore new approaches for the future (not so distant). Al-Based Analyses (satellite-exlusive)
are found to be radiometrically, spatially and geophysically consistent with traditional analyses.

+* Goal of this study is not to show Al can do better, but that it can provide at least similar quality, much faster. It appears to be doing that.

+» Different components can benefit from Al (Inversion, Data Assimilation, RT, QC, Data Fusion,.. ) for NWP and Situational Awareness SA.

+»* Encouraging results so far were found when assessing derivation of AMV using Al (not shown) and when assessing the feasibility of
correcting GFS forecasts (using ECMWEF as a target). Pointing to the potential for using Al for actual forecasting (at least short-term).

+» Training is key for Al. Nature Run Datasets presents a good source for this.

¢ Pursuing Al applications, we believe, will allow us to :
* (1) Reduce pressure on Infrastructure (ground systems), HPC and cost
* (2) benefit from new environmental data (and face increased volume), including satellite data from all partners, including loT
* (3) Improve Latency
* (4) Reduce cost of running legacy systems (remote sensing and data assimilation/fusion systems)
* (5) Increase percentage of satellite data being assimilated (improved thinning, QC-ing, faster processing, etc)
* (6) Reduce time to run OSE/OSSE and in general data assimilation/fusion systems, for decision making purposes

* (7) Perhaps Improve forecast as a result of above and because Al can be exploited for forecast improvement



Methodology and Description

(baby steps)

e Scope of the effort: RS and Forecasting Adjustment

O focus on satellite-based analyses (RS), focusing on an enterprise
algorithm used for inversion and assimilation pre-processing

O but also assess capability of short term forecast correction
o0 focus on atmosphere (T, Q, Wind) but highlight surface
parameters and hydrometeors capability as well
* Tools: Google TensorFlow

 Real data
O Focus on SNPP/ATMS and SNPP/CrIS

Training & Verification:

Sets: ECMWEF Analyses, G5NR
fields, GDAS Analyses

Noise addition: uncorrelated,
Gaussian distributed noise with
spread of (instrument noise*2)
is added to simulations

Sampling: Training data is
randomly selected from a fixed
set of ¥5% of a days worth of
data in each training epoch

Simple training (sample over a
day generally

Independent sets used for
verification, but still the same
period
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