Assimilation of Suomi-NPP/CrIS radiances into the JMA's global NWP system

Norio Kamekawa, Masahiro Kazumori
Numerical Prediction Division
Japan Meteorological Agency

The 21th International TOVS Study Conference (ITSC-21), Darmstadt, Germany 29 November - 5 December 2017
[SESSION 9a] 9.02:Hyperspectral IR assimilation
Table of Contents

1. Usage status of Hyperspectral IR sounder data
2. Introduction of Suomi-NPP/CrIS in GSM
3. Impact study by improving ozone analysis
4. Summary
Current usage of HSS in JMA

IASI and AIRS (hereafter, refer to as HSS) radiance data have been operationally assimilated into JMA’s global Numerical Weather Prediction (NWP) system since September 2014. HSS data contribute to the accuracy of NWP forecasts.

We got positive results from CrIS data assimilation experiments in JMA NWP system. We have operationally used CrIS data since this March.
Usage status of other NWP centers

ITSC-21(2017.11) HSS NWP Survey

As of 2017.11.21 online

<table>
<thead>
<tr>
<th>Centre</th>
<th>CrIS</th>
<th>15 microns (1)</th>
<th>Window + O3 (2)</th>
<th>H2O (3)</th>
<th>Short Wave (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Land</td>
<td>Ocean</td>
<td>Land</td>
<td>Ocean</td>
</tr>
<tr>
<td>ECCC (Canada)</td>
<td></td>
<td>41</td>
<td>41</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>ECMWF (Europe)</td>
<td></td>
<td>88</td>
<td>88</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>MET Norway (Norway)</td>
<td></td>
<td>27</td>
<td>45</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>US-FNMOC/NRL (USA)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DWD (Germany)</td>
<td></td>
<td>75 (5)</td>
<td>75</td>
<td>15 (5)</td>
<td>27</td>
</tr>
<tr>
<td>Met Office (UK)</td>
<td></td>
<td>25</td>
<td>27</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DMI (Denmark)</td>
<td></td>
<td>42</td>
<td>55</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>JMA (Japan)</td>
<td></td>
<td>69</td>
<td>69</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Meteo France (France)</td>
<td></td>
<td>34</td>
<td>75</td>
<td>12</td>
<td>27</td>
</tr>
</tbody>
</table>

Introduction of CrIS on March 2017

JMA started the use of CrIS radiance data from CO2 band. Increase of channel for assimilation is our future work.
Merit of CrIS use in Early analysis

Early Analysis

- Early analysis: analysis for long range forecasts (11 day)
- ECTL (Equator-Crossing Times Local) of both AIRS and CrIS are 13:30.
 - Backup of AIRS (High priority in the data thinning for CrIS)
 - Expansion of coverage (Wider Swath AIRS: 1650km < CrIS: 2230km)

Aqua/AIRS
Metop-A/IASI
Metop-B/IASI
S-NPP/CrIS

Data cut off time
2h20m

Direct broadcast CrIS data received at MSC/JMA are used.
Used channels

Weighting Function of CrIS

<table>
<thead>
<tr>
<th>Pressure level (hPa)</th>
<th>15 microns CO₂</th>
<th>window + O₃</th>
<th>H₂O</th>
<th>Short Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
<td>12</td>
<td>9.6</td>
<td>8</td>
</tr>
</tbody>
</table>

27 long-wave temperature sounding channels (around 15 um)
The observation error was estimated from FG departure statistics. Smaller observation errors are assigned for CrIS compared to other HSS (IASI, AIRS).

Statistic period
Jun. 2015 - Aug. 2015 summer
Dec. 2015 – Feb. 2016 winter
Setup of assimilation experiments

Experiments to investigate the impacts of utilizing CrIS in the latest global NWP system

Control : current operational system
Test : Control + Suomi-NPP/CrIS

Assimilation Period: From 10 July to 11 September 2015
From 10 December 2015 to 11 February 2016
Forecast from 12UTC initial every day

GSM: Global Spectral Model
TL959(0.1875deg.) / 100 Layers up to 0.01hPa
4D-Var (inner loop: TL319)
Assimilation window: 6 hr (-3~+3 hours)
RTM for assimilation: RTTOV 10.2
FG fit to observations

Changes of standard deviation of FG departure.

Improvement of temperature sensitive channels of AMSU-A (stratosphere and upper troposphere).

Large improvements of GNSS RO in the Southern Hemisphere.

AMSU-A and GNSS RO showed consistent positive results.

Negative value indicates improvements.
Change in RMSE of geopotential height forecast

Warm color indicates improvement

Improvements in geopotential height forecast in the Southern Hemisphere

RMSE is against own analysis
Recent development

1. Usage status of Hyperspectral IR sounder data
2. Introduction of Suomi-NPP/CrIS in GSM
3. Impact study by improving ozone analysis
4. Summary
Improvement of Ozone Profile

Stratosphere: Adding the gas-phase reaction \([\text{ClO} + \text{OH} \rightarrow \text{HCl} + \text{O}_2]\) and updating the photolysis rate table significantly reduces the negative model bias of ozone in the upper stratosphere.

Troposphere: By adding detailed tropospheric chemistry, vertical distributions of tropospheric ozone agree better with the observations.

Comparison of vertical ozone profiles from MLS observation, old model (blue) and new model (red).
(a) Bias and (b) RMSE against MLS observations are shown in the partial volume of ozone.

Comparison of vertical ozone partial pressure profiles from ozonesonde (black) at Naha.
Error bars show the standard deviations of the observations.

Improvements of New Model

- New Model (MRI-CCM2)
- Old Model (MRI-CCM1)
Setup of assimilation experiments

Experiments to investigate the impacts of utilizing new ozone profile in the latest global NWP system

- **Control**: current operational system
- **Test**: Control + new ozone profiles

Assimilation Period: From 10 July to 11 September 2015
 - From 10 December 2015 to 11 February 2016
Forecast from 12UTC initial every day
Impact of new ozone on analysis

FG fit to IASI are improved in tropics area. The number of the lower layer of HSS is increased. A case of typhoon track prediction improved was confirmed.
Summary

• CrIS radiance data are assimilated operational at JMA global NWP system.
• Improved temperature analysis and FG in the upper troposphere and stratosphere.
• Large improvement of geopotential height forecast especially in the southern hemisphere.

• Use of new ozone profile of JMA for HSS produced better temperature analysis. An improved TY prediction was found.
• Better ozone profiles contribute to the accuracy of NWP.
Thank you for your attention.
Backup slide
Improvement of Ozone Profile

Ozone Profile for RTTOV10.2 in GA is given by the JMA products.

Comparison of New Ozone and Old Ozone reference to ozone profile of Aura/MLS

Impact of new ozone on analysis

Average typhoon track forecast

The number of the lower layer of HSS is increased. The significant improvement of lower layer temperature field may have reduced errors of typhoon track forecast.

Typhoon case

<table>
<thead>
<tr>
<th>Positional Error (km)</th>
<th>Number of Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST</td>
<td>CNTL</td>
</tr>
<tr>
<td>T1514</td>
<td></td>
</tr>
<tr>
<td>T1515</td>
<td></td>
</tr>
</tbody>
</table>

NH

FG Departure

TR

IASI

SH

Increase

Better