Physical Simultaneous Retrieval of Emissivity Spectrum and Thermodynamical parameters: A case study for desert soils

Guido Masiello and Carmine Serio
DIFA, University of Basilicata, Italy
Basic methodological steps to retrieve surface emissivity

Step 1: Represent emissivity with a Fourier cosine truncated series to lower its dimensionality below that of the IASI spectrum.

Step 2: Constrain the retrieval with Laboratory measurements

Step 3: Balance between Atmospheric and Emissivity Constraints with a 2-Dimensional L-curve criterion
Basic methodological steps to retrieve surface emissivity

Step 2: Constrain the retrieval with Laboratory measurements

Background Retrieval Methodology: the retrieval problem is formulated within the context of optimal estimation

\[
(R - F(v))^T S_\varepsilon^{-1} (R - F(v)) + (\nu - \nu_a)^T S_a^{-1} (\nu - \nu_a)
\]

Linearize

\[
(y - Kx)^T S_\varepsilon^{-1} (y - Kx) + (x - x_a)^T S_a^{-1} (x - x_a)
\]

\[
y = R - F(v_o)
\]

\[
x = \nu - \nu_o
\]

\[
x_a = \nu_a - \nu_o
\]

How we modify the Physics to include surface emissivity

\[
K = \left(\frac{\partial F}{\partial \nu} \right)_{\nu = \nu_o}
\]
How we modify the Physics to include surface emissivity

- Use the \textit{logit} transform to map emissivity from the interval \([0,1]\) to the range \([-\infty, +\infty]\)

$$y(i) = \text{logit}(\varepsilon(i)) = \log\left(\frac{\varepsilon(i)}{1 - \varepsilon(i)}\right) \quad i = 1, \ldots, N_{ch} ; \quad N_{ch} = \text{IASI channels}$$

- which has the inverse

$$\varepsilon(i) = \frac{\exp(y(i))}{1 + \exp(y(i))} \quad i = 1, \ldots, N_{ch}(i)$$
To retrieve for emissivity, the given radiance $R(i)$, with i the channel, is first linearized also with respect to the function $y(i)$, that is we consider in the inverse problem also a linear term of the type

$$\frac{\partial R(i)}{\partial y(i)} (y(i) - y_0(i)) \quad (3)$$

with $y_0(i)$ a suitable first guess. The derivative term can be easily computed when we consider the dependence of the radiance on the surface term,

$$\varepsilon(i) \tau_o(i) B(T_g)$$

where $\tau_o(i)$ is the total transmittance at channel i, and $B(T_g)$ is the Planck function computed at the ground-surface temperature T_g. We have for the derivative,

$$\frac{\partial R(i)}{\partial y(i)} = \frac{\partial R(i)}{\partial \varepsilon(i)} \frac{\partial \varepsilon(i)}{\partial y(i)} = \frac{\partial R(i)}{\partial \varepsilon(i)} \left(\frac{\partial y(i)}{\partial \varepsilon(i)} \right)^{-1} = \frac{\partial R(i)}{\partial \varepsilon(i)} \varepsilon(i)(1-\varepsilon(i)) = \tau_o(i) B(T_g) \varepsilon(i)(1-\varepsilon(i))$$
Second, we develop the function in a truncated cosine series

\[y(i) = \sum_{k=1}^{N_{cut}} w(k) c(k) \cos \frac{\pi (2i - 1)(k - 1)}{2N_{ch}} \]

\[w(k) = \begin{cases} \sqrt{\frac{1}{N_{ch}}} & k = 1 \\ \sqrt{\frac{2}{N_{ch}}} & k = 2, \ldots, N_{cut} \end{cases} \]

where, \(N_{cut} < N_{ch} \). The Fourier coefficients, \(c(k) \) can be obtained by,

\[c(k) = w(k) \sum_{i=1}^{N_{ch}} y(k) \cos \frac{\pi (2i - 1)(k - 1)}{2N_{ch}} \quad k = 1, \ldots, N_{ch} \]

\[w(k) = \begin{cases} \sqrt{\frac{1}{N_{ch}}} & k = 1 \\ \sqrt{\frac{2}{N_{ch}}} & k = 2, \ldots, N_{ch} \end{cases} \]
Continue............
and Inserting the truncated cosine transform within the linear term (3), we get

\[\frac{\partial R(i)}{\partial y(i)} \left(\sum_{k=1}^{N_{cut}} w(k) c(k) \cos \frac{\pi (2i - 1)(k - 1)}{2N_{ch}} - \sum_{k=1}^{N_{cut}} w(k) c_o(k) \cos \frac{\pi (2i - 1)(k - 1)}{2N_{ch}} \right) \]

which defining the jacobian matrix,

\[A_{ik} = \frac{\partial R(i)}{\partial y(i)} w(k) \cos \frac{\pi (2i - 1)(k - 1)}{2N_{ch}}, \quad i = 1, \ldots, N_{ch}; \quad k = 1, \ldots, N_{cut} \]

allows us to rewrite the linear term (2) in a matrix form,

\[A(c - c_o) \quad (4) \]

Which is suitable for inversion. Note that in (4) the cosine coefficients vectors have size \(N_{cut} \), and the matrix \(A \) has size \(N_{ch} \times N_{cut} \).
The Fourier transform allows us to work in terms of spectral resolution, exactly the way we deal with this concept. For sea emissivity, 60 Fourier Coefficients are enough.
...but, if we want to resolve the Quartz Resthralen bands in desert soil we need more than 200 Fourier Coefficients.
Background Retrieval Methodology: the retrieval problem is formulated within the context of optimal estimation

\[
(R - F(v))^T S^{-1}_\varepsilon (R - F(v)) + (v - v_a)^T S^{-1}_a (v - v_a)
\]

Linearize

\[
(y - Kx)^T S^{-1}_\varepsilon (y - Kx) + (x - x_a)^T S^{-1}_a (x - x_a)
\]

\[
y = R - F(v_o)
\]

\[
x = v - v_o
\]

\[
x_a = v_a - v_o
\]

\[
K = \left(\frac{\partial F}{\partial v} \right)_{v=v_o}
\]

From the size of background constraint we introduce information from laboratory measurements
Laboratory emissivity is used for the background, mean and covariance matrix assumed to be diagonal (ASTER-Salisbury data base)
The whole covariance matrix for atmospheric parameters and emissivity is built up in block-diagonal matrix

\[
S_a = \begin{pmatrix}
\gamma_1 S_a^{Atm} & 0 \\
0 & \gamma_2 S_a^{Emis}
\end{pmatrix}
\]

\(\gamma_1\) and \(\gamma_2\) can be optimized to balance between the two terms. Balancing is obtained with an original and fully analytical implementation of a 2-D L-curve criterion.
Fully 2-D L-curve method, outline of the mathematics involved

\[L(\gamma_1, \gamma_2) \overset{\text{def}}{=} \begin{cases} z &= \varphi(\gamma_1, \gamma_2) = (G\hat{u} - y)^t(G\hat{u} - y) \\ x &= \psi(\gamma_1, \gamma_2) = \hat{u}^tI_{\gamma_1}\hat{u} \\ y &= \omega(\gamma_1, \gamma_2) = \hat{u}^tI_{\gamma_2}\hat{u} \end{cases} \]

The Gaussian curvature is given by

\[\kappa(\gamma_1, \gamma_2) = \frac{\left| \det P \right|}{w^4} \]

with

\[w^2 = 1 + \left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 \]

and where \(\left| \det P \right| \) is the absolute value of the determinant of the matrix, \(P \), whose elements, \(P_{ij} \) are

\[P_{ij} = \frac{\partial^2 z}{\partial x_i \partial x_j} \]

with \(i, j = 1, 2 \) and \(x_1 = x, x_2 = y \). The derivatives above can be obtained by a transformation of partial derivatives of \(\varphi, \psi, \omega \) with respect the two regularization parameters, \(\gamma_1, \gamma_2 \). Introducing the notation,

\[\begin{cases} X_i = \frac{\partial X}{\partial \gamma_i}, & i = 1, 2 \\ X_{ij} = \frac{\partial^2 X}{\partial \gamma_i \partial \gamma_j}, & i, j = 1, 2 \end{cases} \]

to indicate the derivative of a given function \(X \) with respect to \(\gamma_1 \) and \(\gamma_2 \), we have

\[\begin{cases} \frac{\partial z}{\partial x} = g = \frac{\varphi_1}{\varphi} + \frac{\varphi_2}{\varphi} \\ \frac{\partial z}{\partial y} = g^* = \frac{\psi_1}{\psi} + \frac{\psi_2}{\psi} \end{cases} \]

And for the second derivatives,

\[\begin{cases} \frac{\partial^2 z}{\partial x^2} = \frac{\varphi_1}{\varphi^2} + \frac{\varphi_2}{\varphi^2} \\ \frac{\partial^2 z}{\partial y^2} = \frac{\psi_1}{\psi^2} + \frac{\psi_2}{\psi^2} \\ \frac{\partial^2 z}{\partial x \partial y} = \frac{\varphi_1}{\varphi \psi} + \frac{\varphi_2}{\varphi \psi} \end{cases} \]
with

$$
\begin{align*}
\begin{cases}
g_1 = -\frac{y_1}{v_2} - \frac{y_2}{v_1} + \frac{v_1}{v_2} - \frac{v_2}{v_1} \\
g_2 = -\frac{y_1}{v_2} - \frac{y_2}{v_1} + \frac{v_1}{v_2} - \frac{v_2}{v_1} \\
g_1' = -\frac{y_1}{v_2} - \frac{y_2}{v_1} + \frac{v_1}{v_2} - \frac{v_2}{v_1} \\
g_2' = -\frac{y_1}{v_2} - \frac{y_2}{v_1} + \frac{v_1}{v_2} - \frac{v_2}{v_1}
\end{cases}
\end{align*}
$$

The notation X_1 and X_{ij} for the first and second derivatives allows us to deal with these quantities as components of a vector and a matrix, respectively. This greatly simplifies the software implementation of an algorithm to compute the Gaussian curvature for each given couples (γ_1, γ_2). At this point we need a scheme to compute the derivatives of φ, ψ, ω. These can be obtained by a direct differentiation of the parametric surface of Eq. 2. Continuing to use the simplified notation also for the derivatives of the vector solution, \hat{u}, we have for the derivatives of φ,

$$
\begin{align*}
\begin{cases}
\varphi_1 = (\hat{G}_u)^t(\hat{G}_u - \hat{y}) + (\hat{G}_u - \hat{y})^t(\hat{G}_u) \\
\varphi_2 = (\hat{G}_u)^t(\hat{G}_u - \hat{y}) + (\hat{G}_u - \hat{y})^t(\hat{G}_u) \\
\varphi_{11} = (\hat{G}_{u1})^t(\hat{G}_{u1} - \hat{y}) + 2(\hat{G}_{u1})^t(\hat{G}_{u1}) + (\hat{G}_{u1} - \hat{y})^t(\hat{G}_{u1}) \\
\varphi_{22} = (\hat{G}_{u2})^t(\hat{G}_{u2} - \hat{y}) + 2(\hat{G}_{u2})^t(\hat{G}_{u2}) + (\hat{G}_{u2} - \hat{y})^t(\hat{G}_{u2}) \\
\varphi_{12} = (\hat{G}_{u12})^t(\hat{G}_{u12} - \hat{y}) + (\hat{G}_{u12})^t(\hat{G}_{u12}) + (\hat{G}_{u12} - \hat{y})^t(\hat{G}_{u12}) \\
\varphi_{21} = (\hat{G}_{u21})^t(\hat{G}_{u21} - \hat{y}) + (\hat{G}_{u21})^t(\hat{G}_{u21}) + (\hat{G}_{u21} - \hat{y})^t(\hat{G}_{u21})
\end{cases}
\end{align*}
$$

For the derivatives of ψ, we have

$$
\begin{align*}
\begin{cases}
\psi_1 = \hat{u}_1\hat{I}_{\gamma_1}\hat{u} + \hat{u}^t\hat{I}_{\gamma_1}\hat{u}_1 \\
\psi_2 = \hat{u}_2\hat{I}_{\gamma_2}\hat{u} + \hat{u}^t\hat{I}_{\gamma_2}\hat{u}_2 \\
\psi_{11} = \hat{u}_{11}\hat{I}_{\gamma_1}\hat{u} + 2\hat{u}\hat{I}_{\gamma_1}\hat{u}_1 + \hat{u}^t\hat{I}_{\gamma_1}\hat{u}_{11} \\
\psi_{22} = \hat{u}_{22}\hat{I}_{\gamma_2}\hat{u} + 2\hat{u}\hat{I}_{\gamma_2}\hat{u}_2 + \hat{u}^t\hat{I}_{\gamma_2}\hat{u}_{22} \\
\psi_{12} = \hat{u}_{12}\hat{I}_{\gamma_1}\hat{u} + \hat{u}_{12}\hat{I}_{\gamma_1}\hat{u}_1 + \hat{u}_{12}\hat{I}_{\gamma_1}\hat{u}_2 + \hat{u}_{12}\hat{I}_{\gamma_1}\hat{u}_{12} \\
\psi_{21} = \hat{u}_{21}\hat{I}_{\gamma_2}\hat{u} + \hat{u}_{21}\hat{I}_{\gamma_2}\hat{u}_1 + \hat{u}_{21}\hat{I}_{\gamma_2}\hat{u}_2 + \hat{u}_{21}\hat{I}_{\gamma_2}\hat{u}_{21}
\end{cases}
\end{align*}
$$

Because of the symmetry of two terms ψ and ω, the derivatives of ω are obtained by replacing \hat{I}_{γ_1} with \hat{I}_{γ_2} in Eq. 10.

Finally, it is seen that all the computations above depend on the partial derivatives of the \hat{u}. These can be easily obtained by differentiation of Eq. ?? We have

$$
\begin{align*}
\begin{cases}
\hat{A}\hat{u}_1 = -\hat{I}_{\gamma_1}\hat{u} \\
\hat{A}\hat{u}_2 = -\hat{I}_{\gamma_2}\hat{u} \\
\hat{A}\hat{u}_{11} = -2\hat{I}_{\gamma_1}\hat{u}_1 \\
\hat{A}\hat{u}_{22} = -2\hat{I}_{\gamma_2}\hat{u}_2 \\
\hat{A}\hat{u}_{12} = -\hat{I}_{\gamma_1}\hat{u}_2 - \hat{I}_{\gamma_2}\hat{u}_1 \\
\hat{A}\hat{u}_{21} = -\hat{I}_{\gamma_2}\hat{u}_1 - \hat{I}_{\gamma_1}\hat{u}_2
\end{cases}
\end{align*}
$$
Retrieval exercise over desert areas

- Sahara Desert
- Arabian Desert
- Namibia Desert

- July 22, 2007,
 - 6:45 (Arabia)
 - 8:35 (Other)
Results: Namibia desert

ε in LW lower than in the SW. It means fine grain of sands
Simultaneously retrieved with $\varepsilon(\sigma)$: T_s, T, H_2O, O_3
Arabian desert

Coarse pixels (Western)
Sahara desert
Kalahari Savanna

[Graphs and charts related to spectral data are shown, depicting various wave numbers and corresponding intensities.]
Conclusions

- We have developed a physical inverse methodology to retrieve the emissivity spectrum simultaneously with Surface Temperature and Atmospheric parameters: Temperature, water vapour and ozone. The methodology relies mainly on three basic ideas:
 - Develop the emissivity spectrum in a truncated Fourier cosine series
 - Constrain the solution with Laboratory measurements
 - Balance the optimal estimation final product with a 2-Dimensional L-curve criterion

- A test retrieval exercise with IASI observations over desert area shows that the retrieved emissivity spectrum is capable to capture the fine details of the surface emission, even with a non committal background covariance matrix for emissivity

- The methodology will be soon applied to derive maps at global scale of the emissivity spectrum.
Set of parameters retrieved with φ-IASI

Simultaneously
- Emissivity spectrum
- Skin Temperature
- Temperature profile
- Water vapour profile
- Ozone profile

Sequentially, column amount
- CO
- CO$_2$
- CH$_4$
- N$_2$O