Joint Temperature, Humidity, and Sea Surface Temperature Retrieval from IASI Sensor Data

Marc Schwaerz and Gottfried Kirchengast

ARSCliSys@IGAM, University of Graz, Austria

marc.schwaerz@uni-graz.at, gottfried.kirchengast@uni-graz.at
Joint Temperature, Humidity, and SST Data from IASI Measurements

Outline:

- Metop - IASI
- Forward Model and Retrieval
- Results
- Summary and Outlook
Joint Temperature, Humidity, and SST Data from IASI Measurements

Metop - IASI
Metop - IASI

Instruments on board of Metop

- IASI
- AMSU – A
- ASCAT
- AVHRR
- GOME – 2
- GRAS
- HIRS
- MHS

Spectral Range: 645 – 2760 cm\(^{-1}\)
Data Rate: 1.5 Mbits/s
Lifetime: 5 years
Power: 200 Watt
Mass: 210 kg
Size: 1.2m x 1.1m x 1.1m

Source: www.esa.int

Source: www.space-technology.com/
Metop - IASI

iasi – infrared atmospheric sounding interferometer

- 8461 channels, divided into 3 bands
- water vapor absorption: 1250 – 2000 cm\(^{-1}\)
- CO\(_2\) absorption: near 645 and 2325 cm\(^{-1}\)
- additional absorption of O\(_3\), CH\(_4\), N\(_2\)O, CO, SO\(_2\)

a) IASI scanning procedure.

b) brightness temperature spectrum of IASI simulated by RTIASI
Joint Temperature, Humidity, and SST Data from IASI Measurements

Forward Model and Retrieval
Forward Model and Retrieval

the fast radiative transfer model RTIASI:

- simulation of the IASI measurements at 43 pressure levels between 0.1 and 1013.25 hPa
- Calculation of regression coefficients
- Calculation of level to space transmittances
- Solution of the radiative transfer equation to estimate Brightness Temperatures T_B (or radiances, respectively)

tangent linear and adjoint model to calculate:

- Jacobians for T, q, O_3, and SST —
 $\partial T_B/\partial T$, $\partial T_B/\partial \ln q$, $\partial T_B/\partial \ln O_3$, and $\partial T_B/\partial \text{SST}$
Forward Model and Retrieval

connecting the forward model and the retrieval

• the forward model reads

\[y = F(x) + \varepsilon \]

- \(y, x \) ... measurement and state vector
- \(F \) ... forward model operator, Jacobian matrix \(K \) times \(x \)
- \(\varepsilon \) ... measurement error vector
- rows of Jacobian \(K \) can be interpreted as “weighting functions”

• the direct inversion reads

\[x_r = K^{-g} y \]

- ill-conditioned problem
- over-determined for \(m>n \)
Forward Model and Retrieval

- Optimal estimation
 - incorporates sensibly a priori knowledge
 - statistically optimal combination of unbiased measurements and prior data
- Linearized iterative optimal estimation scheme

\[
x_{i+1} = x_{ap} + S_i K_i S_{\varepsilon}^{-1} \left[(y - y_i) + K_i (x_i - x_{ap}) \right]
\]

\[
S_i = \left(K_i^T S_{\varepsilon}^{-1} K_i + S_{ap}^{-1} \right)^{-1}
\]

- \(S_{\varepsilon} \) ... observation and forward modeling error covariance matrix
- \(S_i \) ... retrieval error covariance matrix
- \(S_{ap} \) ... a priori error covariance matrix
- \(x_{ap} \) ... a priori profile
- \(x_{i+1} \) ... retrieved profile (iteration \(i \))
the a priori error covariance matrix

• for temperature:
 off diagonal elements:
 ➢ exponential drop off
 ➢ 6 km correlation length

• for humidity:
 off diagonal elements:
 ➢ exponential drop off
 ➢ 3 km correlation length
Forward Model and Retrieval

the measurement error covariance matrix

• diagonal elements:
 ➢ IASI 1c noise levels
 ➢ adapted to actual brightness temperature
 ➢ + 0.2 K forward model error

• off diagonal elements:
 correlation of 3 nearest neighbor channels:
 1) - * 0.75
 2) - * 0.25
 3) - * 0.04
Joint Temperature, Humidity, and SST Data from IASI Measurements

Results
Results

the simulation of the measurement vector

- calculation with the fast radiative transfer model RTIASI
- superposition of radiometric noise Δy, consistent with S_ε, according to iasi-1c noise levels to get quasi realistic data
Results

channel selection

• removal of channels over 2500 cm⁻¹ and of channels with trace gas absorption:

 975–1100 cm⁻¹: \(\text{O}_3 \)
 1220–1370 cm⁻¹: \(\text{CH}_4 \)
 2085–2200 cm⁻¹: \(\text{CO}, \text{O}_3 \)

 \(\rightarrow 5781 \text{ channels} \)

• information content theory:

 \[H = \frac{1}{2} \log |S_{ap}S^{-1}| \]

 with:

 \[S_i = \left(K_i^T S^{-1}_e K_i + S^{-1}_{ap} \right)^{-1} \]

• maximum sensitivity approach:

 \[M = S_{e}^{-\frac{1}{2}} K \]
Results

simulation region
Results

humidity profiles

a) true humidity profile, b) a priori humidity profile, c) specific humidity difference (ap - true) [%].

Marc Schwaerz, IGAM/UG
ITSC XIII; Oct. 28 – Nov. 4, 2003
Ste-Adele, Quebec, Canada
Results

humidity profiles – estimation comparison

a) IC – few channels, b) MS – few channels, c) IC – many channels, d) humidity only retrieval.
Results

humidity profiles – error analysis

a) IC – few channels, b) MS – few channels, c) IC – many channels, d) humidity only retrieval.
Results

humidity profiles UTH - estimation comparison

a) IC – few channels, b) UTH – IC – few channels.
Results

humidity profiles – UTH

a) IC – few channels, b) UTH – IC – few channels.
Results

temperature profiles

a) true temperature profile, b) a priori temperature profile, c) temperature difference (ap - true) [K].
Results

temperature profiles - estimation comparison

a) IC – few channels, b) MS – few channels, c) IC – many channels, d) temperature only retrieval.
Results

temperature profiles – error analysis

a) IC – few channels, b) MS – few channels, c) IC – many channels, d) temperature only retrieval.
Results

Sea surface temperature

a) true surface skin temperature, b) a priori – true surface skin temperature [K].
Results

Sea surface temperature - estimation comparison

a) IC – few channels, b) sst only retrieval.

Marc Schwaerz, IGAM/UG

ITSC XIII; Oct. 28 – Nov. 4, 2003

Ste-Adele, Quebec, Canada
Results

sea surface temperature – error analysis

a) IC – few channels, b) sst only retrieval, c) IC – many channels.
Joint Temperature, Humidity, and SST Data from IASI Measurements

Summary and Outlook
Summary and Outlook

• IASI is the most advanced IR sounder to be launched in the near future.
• The IC based channel reduction makes the retrieval efficient – reduction from >8400 to ~3 % only (~250).
• The joint algorithm shows an clearly improved performance compared to more specific retrieval setups.
• Retrieval accuracy: ~1K (T) and 15% (q) at 1 – 3 km in the troposphere.
• A priori data exhibit important influence in the stratosphere.
• Some challenging areas are found in the mid-latitude regions and at heights with weak sensitivity of the weighting functions.
Summary and Outlook

• improvements:
 ➢ direct use of the relevant ECMWF a priori covariance matrices for T and q.
 ➢ testing with another ground track region.

• next steps:
 ➢ inclusion of an ozone retrieval into the joint algorithm.
 ➢ application of the algorithm to AIRS data is planned.
Joint Temperature, Humidity, and SST Data from IASI Measurements

Thank You!