Definition of thetuning

Let B be the covariance matrix specified in an operational data assimilation system and let Bt = E(e,.e,")
be the “true” matrix. In the same way let usdefineR and R, « true » = E(g.e,") as the specified and true
observational error covariance matrices, and Ry, Ry, and B, By the specified and true matrices related to

the kth type of observations and to the Ith independent subpart of the control vector.

L et us suppose one can write
B=$B,R=%R
Or

Riu= 8ok Ry, By= 81 B

How to evaluate the tuning coefficients’ s, and s, (s, and smﬂ

Desroziersand | vanov (2001) proposed to use an optimality criterion found by Talagrand(1999) : the

tuning coefficients are those for which thiscriterion if fulfilled

Desroziers and Ivanov’s method (2001)

Let =27, + 23, bethe cost fuction used in an operational system (suboptimal)

Let J=23 /Sy + ZJ,/S, be the cost function using « true » matrices.

If x, istheminimizer of J then, following Talagrand (1999), the expectations of the subparts of the cost

function at the minimum are:

E(2)ok(Xa)/s5)=Tr [m(1, "HK)m, ]

E(23y,(x,)/5)=Tr (mKHmT)

Therefore, the tuning coefficients should be such that:

Su= 235X/ Tr [ (1, "HK)m, ]
Sy= 24 (Xa)/ Tr (mKHmT)

Thisisafixed point relation...

K: gain matrix
=BHT(HBHT+R)*

H: observation operator

™, : projection onto the kh
subset of obs.

m;: projection onto the [
subpart of the control
vector

We therefore use afixed point algorithm to compute the tuning coefficients, going form step i to step i+1

using the following relations :

X, (V) is the minimizer of the cost
function tuned with s: the parameter

S = 235 (% (S) Tr [y (1, ~HK D)1, ], VK vector of tuning coefficients at steepi

S04 = 23, (x,(8M)/ Tr (mK OHmT), VI

of the algorithm.
K ®isthe corresponding gain matrix

Notice that no matrix is explicitly stored in the system. In order to compute Tr (HK), one can use a
randomized trace estimation technique, several of them exist. For example Desroziers and Ivanov adapted

amethod proposed by Girard (1981).

Some properties of the method
Chapnik et al. (2003) have shown that:

»The method is equivalent to a Maximum likelihood tuning of the variances. Maximum likelihood is a
genera method to tune parameterized probability densities with respect to observed data, its application in

data assimilation is discussed in Dee and da Silva(1998)
»The quality of the estimates depend on the number of observations

» Tuning independently the guess errors and the observation errors or two statistically
independent observation error variances has little or no effect on the coefficients
» Observations with spatially correlated errors, analyzed with a prescribed

diagonal R matrix may have their variance (possibly grossly) under estimated by the method
»The computed values are temporally stable (up to four years); on the contrary they react quickly and
increase when the quality of observationsis degraded: they behave like variances are supposed to.

Moreover, as aready stated by Desroziers and Ivanov, the first iteration of the fixed point algorithmisa
good approximation of the final result. It is possible to show that it is a biased estimate of the tuning

coefficients, the more observations there are, the smaller the biasis.

Another implementation of the method

Following Sadiki and Fischer (2003) the fixed point algorithm was used with only one iteration, and to

increase the accuracy of the estimate, several situations were “concatenated”:

If Jgd(X,) isthe minimum of the subpart of the cost function related to obs. type k on day i and
Tr [m (1, ~H'K')m,"] isits expected valueif it were optimal, then the tuning coefficients are computed as

Sk (& Il (%)  (Z T [my(l i —HK)m, T )

As suggested by Sadiki and Fischer, the different dates used in the computation are separated by at least 5

daysin order to prevent time correlation.

Resultswith simulated satellite radiances
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Figure. 1: Standard
deviations of AMSU A
channels obtained by the
method in a simulated case.
The black bars are
computed with the
operational thinning
between obs. and the red
bars with a twice larger
thinning interval. A
different deviation is
computed for each satellite ,
a difference is also made
between sea and land
observations. The grey bars
with dots show the
simulated « true » standard
deviations.
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Figure 1 shows the ability of the method to retrieve optimal variances in a simulated case. In this case the true
standard deviations are the operational values and the mis-specified standard deviations are equal to the square
root of the operational values; six dates, separated by more than five days, between 03/15/2003 and 05/19/2003
were used. Another computation was carried out with more thinning of the datain order to check the impact of a
smaller number of observation. The standard deviations were computed for each of the three satellites NOAA15,
NOAA16 and NOAA17, and a difference was made between sea and land observations. In all cases the computed
deviations are fairly close to the expected ones.

Results with true observations
Estimation of TEMP temperature and wind speed vertical profile of standard deviations.

The method was first tried with real observations, the standard deviations of which are supposed to be well
documented: TEMP observations. Figure 2 shows the prescribed profile and the computed profile of standard
deviations for wind speed. Figure 3 shows the same for temperature.

Figure 2: Vertical

P . profiles of TEMP wind

I speed error standard
deviations. The black
line with red circle
markers is the
prescribed profile, the
dashed line with “+”
markers is the computed

profile
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Figure3: As in Fig.2 t
but for TEMP

temperature error P .
standard deviation ' " 1 1 ? ] 1%
profile.

Those profiles were computed, cumulating the observations of 15 dates separated by five days between
03/15/2003 and 05/24//2003. The two figures clearly show that the computed deviations remain close to the
prescribed ones, which was expected. In this case the estimates are realistic.

Estimation of AMSU A channels standard deviations.

With the same conventions as for Fig. 1, Fig. 4 shows the standard deviations computed for true data from 12
dates between 03/15/2003 and 05/24//2003. Some features appear : roughly, al the standard deviations are over
estimated by afactor of 2. It can be seen that, according to this tuning, AMSU —A channel 5 has alarger standard
deviation for land observations than for sea observations. Satellite NOAA 16 instrument seems to have alarger
standard deviation for channel 8 than the other satellites. The standard deviations computed with atwice larger
thinning interval are almost aways larger than those computed with the operational thinning. Such adifference
did not appear in the simulated case. This may be due to spatial correlation or maybe inter-channel correlation
which are known to lead to underestimating the evaluates.
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Figure. 1: Standard deviations of AMSU A channels obtained by the method in a true case. Plotting conventions are the same as in .Eig, 1 but this time

the grey bars with black dots are the prescribed standard deviations

Conclusions and future directions.

Thefirst iteration of Desroziers and Ivanov’s algorithm, cumulating the observations over severa dates, has been
shown to be able to produce reliable estimates in asimulated case. The estimates seem reasonable in the case of
true TEMP messages, its application to ATOV S radiances show several possibly useful and unexpected features
but the role of possible correlations has to be clarified.

Future work will extend to the tuning of all observation typesand alevel by level tuning of B in order to evaluate
the impact of this tuning on the analysis and on the forecasts.
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