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Definition of the tuning
Let B be the covariance matrix  specified in an operational data assimilation system and let Bt = E(eb.eb

T ) 
be the “true” matrix. In the same way let us define R and Rt « true » = E(εO.εO

T ) as the specified and true 
observational error covariance matrices, and Rk, Rtk and Bl, Btl the specified and true matrices related to 
the kth type of observations and to the lth independent subpart of the control vector.
Let us suppose one can write

Bt= sb B, Rt= so R
Or 

Rtk= sok Rk, Btl= sbl Bl

How to evaluate the tuning coefficients: so and sb (sok and sbl) ?
Desroziers and Ivanov (2001) proposed to use an optimality criterion found by Talagrand(1999) : the 
tuning coefficients are those for which this criterion if fulfilled  

Desroziers and Ivanov’s method (2001)
Let J=ΣJok + ΣJbl be the cost fuction used in an operational system (suboptimal)
Let Jt=ΣJok/sok + ΣJbl/sbl be the cost function using « true » matrices. 

If  xa is the minimizer of Jt then, following Talagrand (1999), the expectations of the subparts of the cost 
function at the minimum are:

E(2Jok(xa)/sok)=Tr [πk(Ip –HK)πk
T]

E(2Jbl(xa)/sbl)=Tr (πlKHπl
T)

Therefore, the tuning coefficients should be such that:
sok= 2Jok(xa)/ Tr [πk(Ip –HK)πk

T]
sbl= 2Jbl(xa)/ Tr (πlKHπl

T)

This is a fixed point relation…

We therefore use a fixed point algorithm to compute the tuning  coefficients, going form step i to step i+1
using the following relations :

s(i+1)
ok= 2Jok(xa (s(i)))/ Tr [πk(Ip –HK (i))πk

T], ∀k
s (i+1)

bl= 2Jbl(xa(s(i)))/ Tr (πlK (i)Hπl
T), ∀l

Notice that no matrix is explicitly stored in the system. In order to compute Tr (HK), one can use a 
randomized trace estimation technique, several of them exist. For example  Desroziers and Ivanov adapted 
a method proposed by Girard (1981).

Some properties of the method
Chapnik et al. (2003) have shown that:

The  method is equivalent to a Maximum likelihood tuning of the variances. Maximum likelihood is a 
general method to tune parameterized probability densities with respect to observed data, its application in 
data assimilation is discussed in Dee and da Silva(1998)

The quality of the estimates depend on the number of observations
Tuning independently the guess errors and the observation errors or two statistically

independent observation error variances has little or no effect on the coefficients
Observations with spatially correlated errors, analyzed with a prescribed 

diagonal R matrix may have their variance (possibly grossly) under estimated by the method
The computed values are temporally stable (up to four years); on the contrary they react quickly and 

increase when the quality of observations is degraded: they behave like variances are supposed to.

Moreover, as already stated by Desroziers and Ivanov, the first iteration of the fixed point algorithm is a 
good approximation of the final result. It is possible to show that it is a biased estimate of the tuning 
coefficients, the more observations there are, the smaller the bias is.

Another implementation of the method
Following Sadiki and Fischer (2003) the fixed point algorithm was used with only one iteration, and to 
increase the accuracy of the estimate, several situations were “concatenated”:
If  Jok

i(xa) is the minimum of the subpart of the cost function related to obs. type k on day i and
Tr [πk(Ip –HiKi)πk

T] is its expected value if it were optimal, then the tuning coefficients are computed as

sok=(Σi Jok
i(xa)) / (Σi Tr [πk(Ipi –HiKi)πk

T] )
As suggested by Sadiki and Fischer, the different dates used  in the computation are separated by at least 5 
days in order to prevent time correlation.

Results with simulated satellite radiances

Figure. 1: Standard 
deviations of AMSU A 
channels obtained by the 
method in a simulated case. 
The black bars are 
computed with the 
operational thinning 
between obs. and the red 
bars with a twice larger 
thinning interval. A 
different deviation is 
computed for each satellite , 
a difference is also made 
between sea and land 
observations. The grey bars 
with dots show the 
simulated « true » standard 
deviations. 

Figure 1 shows the ability of the method to retrieve optimal variances in a simulated case. In this case the true 
standard deviations are the operational values and the mis-specified standard deviations are equal to the square 
root of the operational values; six dates, separated by more than five days, between  03/15/2003  and 05/19/2003    
were used. Another computation was carried out with more thinning of the data in order to check the impact of a 
smaller number of observation. The standard deviations were computed for each of the three satellites NOAA15, 
NOAA16 and NOAA17, and a difference was made between sea and land observations. In all cases the computed 
deviations are fairly close to the expected ones.

Results with true observations
Estimation of TEMP temperature and wind speed vertical profile of standard deviations.

The method was first tried with real observations, the standard deviations of which are supposed to be well 
documented: TEMP observations. Figure 2 shows the prescribed profile and the computed profile of standard 
deviations for wind speed. Figure 3 shows the same for temperature.

Those profiles were computed, cumulating the observations of 15 dates separated by five days between 
03/15/2003 and 05/24//2003. The two figures clearly show that the computed deviations remain close to the 
prescribed ones, which was expected. In this case the estimates are realistic.

Estimation of AMSU A channels standard deviations.

With the same conventions as for Fig. 1, Fig. 4 shows the standard deviations computed for true data from 12 
dates between 03/15/2003 and 05/24//2003. Some features appear : roughly, all the standard deviations are over 
estimated by a factor of  2. It can be seen that, according to this tuning, AMSU –A channel 5 has a larger standard 
deviation for land observations than for sea observations. Satellite NOAA16 instrument seems to have  a larger 
standard deviation for channel 8 than the other satellites. The standard deviations computed with a twice larger 
thinning interval are almost always larger than those computed with the operational thinning. Such a difference 
did not appear in the simulated case. This may be due to spatial correlation or maybe inter-channel correlation 
which are known to lead to underestimating the evaluates. 
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Figure. 1: Standard deviations of AMSU A channels obtained by the method in a true case. Plotting conventions are the same as in Fig. 1 but this time 
the grey bars with black dots are the prescribed standard deviations

Figure 2: Vertical 
profiles of TEMP wind 
speed error standard 
deviations. The black 
line with red circle 
markers is the 
prescribed profile, the 
dashed line with “+” 
markers is the computed 
profile

Figure 3: As in  Fig. 2 
but for TEMP 
temperature error 
standard deviation 
profile.

Conclusions and future directions.
The first iteration of Desroziers and Ivanov’s algorithm, cumulating the observations over several dates, has been 
shown to be able to produce reliable estimates in a simulated case. The estimates seem reasonable in the case of 
true TEMP messages, its application to ATOVS radiances show several possibly useful and unexpected features 
but the role of possible correlations has to be clarified.

Future work will extend to the tuning of all observation types and a level by level  tuning of B in order to evaluate 
the impact of this tuning on the analysis and on the forecasts.
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K: gain matrix 
=BHT(HBHT+R)-1

H: observation operator

πk : projection onto the kth

subset of obs.

πl: projection onto the lth

subpart of the control 
vector

xa (s(i)) is the minimizer of the cost 
function tuned with  s(i) : the parameter 
vector of tuning coefficients at steep i
of the algorithm.
K (i) is the corresponding gain matrix


