GOES-14 SRSO-R Imagery over North Carolina

May 21st, 2015 |



 

GOES-14 0.62 µm visible imagery, above, (here as an mp4, and here as a very large (220+ megabytes) animated gif) shows the development of convection over eastern North Carolina in a region of slight risk according to SPC (below).

Day 1 Outlook for Convection from SPC, issued at 1300 UTC 21 May 2015 [click to enlarge]

Day 1 Outlook for Convection from SPC, issued at 1300 UTC 21 May 2015 [click to enlarge]

==================================================================================

Mesoscale Discussion #713 from SPC, below, referenced the Super-Rapid scan imagery:

MESOSCALE DISCUSSION 0713
NWS STORM PREDICTION CENTER NORMAN OK
1111 AM CDT THU MAY 21 2015

AREAS AFFECTED…E-CNTRL AND ERN NC / SC GRAND STRAND

CONCERNING…SEVERE POTENTIAL…WATCH POSSIBLE

VALID 211611Z – 211745Z

PROBABILITY OF WATCH ISSUANCE…60 PERCENT

SUMMARY…SCATTERED STORMS ARE FORECAST TO DEVELOP OVER THE NEXT FEW
HOURS. AN ISOLATED SEVERE THREAT WILL LIKELY DEVELOP AND A WATCH
WILL STRONGLY BE CONSIDERED.

DISCUSSION…SUBJECTIVE SURFACE MESOANALYSIS PLACES A LOW 30 MI W
SOP WITH A WEST-EAST ORIENTED WARM FRONT AND A TRAILING COLD FRONT
ACROSS THE SC PIEDMONT. A PREFRONTAL CONFLUENCE/SURFACE TROUGH
EXTENDS FROM THE LOW SEWD THROUGH THE GRAND STRAND VICINITY.
OBSERVATIONS TO THE E OF THE SURFACE TROUGH AND LOCATED WITHIN THE
WARM SECTOR SHOW TEMPS WARMING TO NEAR 80 DEG F WITH BOUNDARY LAYER
DEWPOINTS IN THE MID-UPPER 60S INLAND AND AROUND 70 NEAR THE COAST.
SUPER RAPIDSCAN VISIBLE IMAGERY SHOWS A BUILDING TCU FIELD
IMMEDIATELY E OF THE LOW AND ALONG THE PREFRONTAL TROUGH/CONFLUENCE
.

WATER VAPOR IMAGERY LATE THIS MORNING IMPLIES A WEAK LEAD
DISTURBANCE MOVING ACROSS W-CNTRL NC AHEAD OF THE MID MS VALLEY
SHORTWAVE TROUGH FORECAST TO APPROACH THE CNTRL APPALACHIANS LATER
TODAY. IT SEEMS THE WEAK UPPER FORCING FOR ASCENT PROVIDED BY THE
LEAD IMPULSE COUPLED WITH ADDITIONAL DIABATIC HEATING WILL ERODE THE
CAP OVER THE NEXT 1-2 HOURS AND SCATTERED STORM COVERAGE IS PROBABLE
BY THE 18-19Z TIMEFRAME.

VEERING AND A GRADUAL STRENGTHENING OF WINDS WITH HEIGHT WILL
SUPPORT STORM ORGANIZATION ONCE A FEW VIGOROUS UPDRAFTS BECOME
ESTABLISHED. FORECAST SOUNDINGS DEPICT MODERATE BUOYANCY AS OF 16Z
ACROSS THE WARM SECTOR AND THIS SHOULD FAVOR STORM INTENSIFICATION
OVER THE NEXT SEVERAL HOURS ONCE INITIATION COMMENCES. ISOLD LARGE
HAIL AND DMGG WINDS WILL BE THE PRIMARY THREATS. DESPITE TEMPERED
LOW-LEVEL SHEAR…A TORNADO MAY ALSO BE POSSIBLE ESPECIALLY IF A
SUPERCELL CAN DEVELOP AND FAVORABLY TRACK ALONG THE WARM FRONT.

..SMITH/THOMPSON.. 05/21/2015

ATTN…WFO…AKQ…MHX…RAH…ILM…CAE…

LAT…LON 35267979 36097844 36297643 35847549 34977597 33737851
33897960 34497991 35267979

==================================================================================

The GOES-13 Sounder captured some of the destabilization that occurred ahead of the developing line of convection. Values less than -5 are widespread over southeastern North Carolina at 1600 UTC, after which time cirrus blowoff obscured the satellite view.

GOES-13 Sounder DPI values of Lifted Index, 1600 UTC 21 May 2015 [click to enlarge]

GOES-13 Sounder DPI values of Lifted Index, 1600 UTC 21 May 2015 [click to enlarge]

Suomi NPP’s orbits on 21 May allowed successive views of the developing convection, once at 1725 UTC and once near 1905 UTC. The convection developed near the edge of the swath in both images, however, so NUCAPS soundings did not view the environment closest to the storms. Infrared imagery, below, shows the quick evolution of convection.

Suomi NPP VIIRS 11.45 µm infrared imagery and NUCAPS Sounding Points (in green), ~1730 and ~1900 UTC 21 May 2015 [click to enlarge]

Suomi NPP VIIRS 11.45 µm infrared imagery and NUCAPS Sounding Points (in green), ~1730 and ~1900 UTC 21 May 2015 [click to enlarge]

VIIRS visible (0.64 µm) and near-infrared (1.61 µm) imagery, below, shows that the developing storms glaciated quickly; the 1.61 µm imagery over the convection shows the darker grey values characteristic of regions where ice crystals are strongly absorbing radiation. Water-based clouds — over Kentucky, for example — appear as bright white in both channels.

Suomi NPP VIIRS 0.64 µm visible imagery and 1.61 µm near-infrared imagery 1903 UTC 21 May 2015 [click to enlarge]

Suomi NPP VIIRS 0.64 µm visible imagery and 1.61 µm near-infrared imagery 1903 UTC 21 May 2015 [click to enlarge]

Severe Weather over the Southern Plains

March 25th, 2015 |

The Storm Prediction Center in Norman issued a Moderate Risk of severe weather over the Southern Plains on March 25, 2015. Convective products were available in AWIPS to help monitor the evolution of this event.

Cloud-Top Cooling (10.7 µm imagery) for GOES-13, 1907-2000 UTC on 25 March 2015 (Click to enlarge)

Cloud-Top Cooling (10.7 µm imagery) for GOES-13, 1907-2000 UTC on 25 March 2015 (click to enlarge)

For example, the Cloud-Top Cooling product, above, monitored rapid development of convection over eastern Arkansas just between 1915 and 2000 UTC (the 10.7µm imagery for about the same time is here). Cloud-Top Cooling depicts where the strongest vertical cloud growth is occurring and is most useful for the initiation of the convection (or subsequent re-energized growth). The NOAA/CIMSS ProbSevere product, below, can also monitor the evolution of the storm from initial growth through maturity and beyond.

NOAA/CIMSS ProbSevere Product, 1900-2028 UTC on 25 March 2015 (Click to animate)

NOAA/CIMSS ProbSevere Product, 1900-2028 UTC on 25 March 2015 (click to animate)

The NOAA/CIMSS ProbSevere product gauges the likelihood of a storm first producing severe weather (of any kind) in the next 60 minutes. It combines information about the environment (Most Unstable CAPE, Environmental Shear) from the Rapid Refresh Model, about the growing cloud (Vertical Growth Rate as a percentage of the troposphere per minute and Glaciation Rate, also as a percentage per minute), and Maximum Expected Hail Size (MESH) from the MRMS. The storm over east-central OK, crossing over the border of Arkansas, showed a ProbSevere value of 45% at 2004 UTC and of 87% at 2006 UTC; 1-inch hail was reported with this storm (in Roland, OK) at 2005 UTC, and a Severe Thunderstorm warning was issued at 2026 UTC. AWIPS-2 imagery that includes readouts for this storm are below.

NOAA/CIMSS ProbSevere product, 2000-2026 UTC on 25 March 2015 (Click to animate)

NOAA/CIMSS ProbSevere product, 2000-2026 UTC on 25 March 2015 (click to animate)

Suomi NPP overflew the region shortly before convection developed, and the NUCAPS soundings in the clear pre-convective air described the thermodynamics of the environment. The location of the NUCAPS soundings are shown below, overlain on top of the Suomi NPP VIIRS visible imagery. The Red and Yellow stars show two sounding locations to be discussed. It’s helpful when using NUCAPS soundings to know surface values of temperature and dewpoint, because it can be helpful to adjust the NUCAPS soundings so that surface values are more in line with observations as reported by METARS. Accordingly, the VIIRS visible image with surface METARS plotted is here. Dewpoints in eastern OK and western AR are close to 60 F/15 C.

NUCAPS Sounding Locations at 1833 UTC on 25 March 2015;  Red and Yellow Stars indicate sounding locations described below (Click to enlarge)

NUCAPS Sounding Locations at 1833 UTC on 25 March 2015; Red and Yellow Stars indicate sounding locations described below (Click to enlarge)

The soundings from the two starred sites are below. In both cases, the original sounding and a sounding that has been modified by increasing the lowest dewpoint by 2 C are shown. Most Unstable CAPE for the plotted soundings (original and modified) are indicated. NUCAPS Soundings suggest greater instability over west-central/northwest Arkansas than over southwestern Arkansas.

NUCAPS Sounding at the red star location, both original and modified (Click to enlarge)

NUCAPS Sounding at the red star location, both original and modified (Click to enlarge)

NUCAPS Sounding at the yellow star location, both original and modified (Click to enlarge)

NUCAPS Sounding at the yellow star location, both original and modified (Click to enlarge)

A short (1900-2015 UTC) GOES-13 visible image animation as the convection started is shown below. Click here for a longer animation (1300 – 2345 UTC); Click here for a faster version of the 1300-2345 UTC animation.

GOES-13 Visible 0.65 µm Imagery (Click to animate)

GOES-13 Visible 0.65 µm Imagery (Click to animate)

[Added: This severe weather outbreak caused the first tornado fatality of 2015, in Tulsa County, OK. Satellite imagery of those storms can be found here. ProbSevere product animations from 2024 to 2230 UTC on 25 March and also from 2206 UTC on 25 March to 0012 UTC on 26 March are shown below]

NOAA/CIMSS ProbSevere product, 2024-2230 UTC on 25 March 2015 (Click to animate)

NOAA/CIMSS ProbSevere product, 2024-2230 UTC on 25 March 2015 (click to animate)

NOAA/CIMSS ProbSevere product, 2206 UTC on 25 March 2015 to 0012 UTC on 26 March 2012 (Click to animate)

NOAA/CIMSS ProbSevere product, 2206 UTC on 25 March 2015 to 0012 UTC on 26 March 2015 (click to animate)

Convection Returns to the central Great Plains

March 24th, 2015 |
Suomi NPP VIIRS 11.45 µm infrared channel images (click to enlarge)

Suomi NPP VIIRS 11.45 µm infrared channel images (click to enlarge)

The ongoing change in seasons was accompanied last night by a round of convection over the Missouri River Valley. Suomi NPP 11.45 µm imagery from overnight shows scattered convection over Kansas, Missouri and Iowa at 0728 and 0909 UTC. Coldest cloud tops are around -65 C. The Day-Night band showed lightning streaks at both times as well, over east-central Kansas at 0728 and north-central Kansas 0909 UTC.

Suomi NPP VIIRS 0.70 µm Day-Night band visible channel images (click to enlarge)

Suomi NPP VIIRS 0.70 µm Day-Night band visible channel images (click to enlarge)

GOES Sounder DPI Lifted Index, times as indicated (click to enlarge)

GOES Sounder DPI Lifted Index, times as indicated (click to enlarge)

The GOES Sounder showed the unstable air that was feeding into this convection. Imagery at three-hourly intervals, above, shows values between 0 and -4 persisting over the central Plains. Plots of 850-mb data on top of the GOES Sounder DPI Lifted index, below, shows the development of strong warm advection over the central Plains that helped feed moisture into the developing convection.

GOES Sounder DPI Lifted Index and Radiosonde data at 850 hPa, times as indicated (click to enlarge)

GOES Sounder DPI Lifted Index and Radiosonde data at 850 hPa (click to enlarge)

NUCAPS soundings, created from both CrIS and ATMS data on board Suomi NPP, below, showed steepening mid-level lapse rates over/near Kansas. This convection likely was not surface-based.

Suomi/NPP NUCAPS Soundings near Kansas City (07z) and over Eastern Kansas (09z) with an individual sounding from the starred point plotted (click to enlarge)

Suomi/NPP NUCAPS Soundings near Kansas City (07z) and over Eastern Kansas (09z) with an individual sounding from the starred point plotted (click to enlarge)

Strong convective winds over Arkansas

July 23rd, 2014 |
GOES-13 0.63 µm visible channel images (click to play animation)

GOES-13 0.63 µm visible channel images (click to play animation)

Arkansas and surrounding states experiences strong convectively-forced winds on July 23 2014 (SPC Storm Reports for the day are shown below). The visible imagery, above, shows the merging of two convective systems: one is moving south-southeastward through eastern Kansas and one is building southwestward from the lower Ohio River Valley into northern Arkansas. (Mesoscale Discussions for this event were issued from SPC at 1656 UTC, 1827 UTC and 2001 UTC on the 23rd).

Storm Reports from 23 July 2014

Storm Reports from 23 July 2014

GOES-13 Sounder DPI Lifted Index (click to play animation)

GOES-13 Sounder DPI Lifted Index (click to play animation)

Analyses from the GOES-13 Sounder (above) showed the atmosphere into which the convective features were building to be very unstable. A large area with Lifted Indices around -10 (light red) is present; values exceed -12 (purple) at 1800 UTC. GOES Sounder DPI Analyses of CAPE (Convective Available Potential Energy, below) (from this site) likewise show strong instability at the start of the day. Convection is initially at both ends of the area of most unstable air; by 1900 UTC, the end of the animation, it has overspread the entire region of instability.

GOES Sounder CAPE (click to play animation)

GOES Sounder CAPE (click to play animation)

GOES-13 10.7 µm infrared channel images (click to play animation)

GOES-13 10.7 µm infrared channel images (click to play animation)

The GOES-13 Infrared Imagery, above, likewise shows the convective systems from Kansas and from the lower Ohio Valley merging over Arkansas.

Suomi-NPP VIIRS data were available over Arkansas on two successive passes on 23 July, at 1829 UTC and 2010 UTC, and these high-resolution infrared images show the quick development and vigor of the convection. The high resolution allowed for the detection of very cold cloud tops at 2010 UTC; minimum values were near -88ºC! Coldest GOES-13 10.7 Brightness Temperatures at 2015 UTC (not shown) were -78ºC.

Suomi NPP VIIRS 11.35 µm infrared channel images (click to enlarge)

Suomi NPP VIIRS 11.35 µm infrared channel images (click to enlarge)

The storms produced considerable lightning as well, as shown in the animation below that overlays hourly lightning strikes on top of the Suomi NPP 11.35 µm imagery: there were 5800 strikes (400 positive) in the hour ending at 1800 UTC, and 12000 strikes (800 positive) in the hour ending at 2000 UTC!

Suomi NPP 11.35 µm infrared channel imagery and Detected Lightning (click to play animation)

Suomi NPP 11.35 µm infrared channel imagery and Detected Lightning (click to play animation)

NOAA/CIMSS ProbSevere showed values from 80-95% at the leading edge of the convection as it moved southward through Arkansas. In this event, satellite data were not available as one of the ProbSevere predictors because of the widespread cirrus shield. MRMS Mesh was generally in the 3/4″ to 1-1/2″ range; that combines with model CAPE values exceeding 4000 and generous shear lead to the high ProbSevere values.

NOAA/CIMSS ProbSevere display including MRMS Base Reflectivity, 1922-2128 UTC 23 July 2013 (click to play animation)

NOAA/CIMSS ProbSevere display including MRMS Base Reflectivity, 1922-2128 UTC 23 July 2013 (click to play animation)

Overshooting Tops, such as those apparent in the 11.35 µm imagery from Suomi NPP, above, can be detected automatically in GOES-13 10.7 µm imagery. The animation of auto-detected overshooting tops, below, from this site, shows a peak in convective intensity (as measured by the number of overshoots) between 2000 and 2100 UTC on the 23rd. This image shows the daily sum of detected overshoots. There is good spatial correlation between that image and the storm reports.

Overshooting Tops Detected from GOES-13, 1545-2300 UTC 23 July 2013 (click to play animation)

Overshooting Tops Detected from GOES-13, 1545-2300 UTC 23 July 2013 (click to play animation)

Finally, CRiS/ATMS data can be used to generate soundings (NUCAPS Soundings) that are available in AWIPS II. The image below shows the spatial coverage of soundings at 2000 UTC on 23 July. The NUCAPS sounding from the easternmost column, third point south of the Oklahoma/Texas border, bottom, is shown at the bottom of the post. The boundary layer of this sounding is too cool and dry — the surface temperature is around 80º F and the surface dewpoint is in the mid-60s. Consequently, the MUCAPE is far too small (about 120 J per kilogram). If the sounding is edited so that surface values are closer to observations (it was 90º F with a 75º F dewpoint in Texarkana at this time) then MUCAPE values jump to near 5000. The sounding is also too dry; the precipitable water is 1.45″ vs. an actual value closer to 2″ at this time.

Suomi NPP VIIRS 11.35 µm Imagery at 2010 UTC, with NUCAPS Sounding Locations in Green (Click to enlarge)

Suomi NPP VIIRS 11.35 µm Imagery at 2010 UTC, with NUCAPS Sounding Locations in Green (Click to enlarge)

Suomi NPP NUCAPS Sounding at 32.7º N, 94.9º W (Click to enlarge)

Suomi NPP NUCAPS Sounding at 32.7º N, 94.9º W (Click to enlarge)