Ice floes in Chesapeake Bay

January 7th, 2018 |

Landsat-8 false-color RGB image [click to enlarge]

Landsat-8 false-color RGB image [click to enlarge]

In the wake of the explosive cyclogenesis off the East Coast of the US on 04 January 2018, very cold air began to spread across much of the eastern half of the Lower 48 states. Focusing on the Hampton Roads area of southeastern Virginia, satellite imagery began to show the formation of ice in the rivers and bays. On 06 January, a 30-meter resolution Landsat-8 false-color Red-Green-Blue (RGB) image viewed using RealEarth (above) revealed some of this ice — in particular, long narrow ice floes (snow and ice appear as shades of cyan) that likely emerged from the Back River (northeast of Hampton) and were drifting northward and southward just off the coast of the Virginia Peninsula.

On the following day (07 January), 250-meter resolution Terra MODIS true-color and false-color RGB images from the MODIS Today site (below) showed that a larger V-shaped ice floe was located just southeast of the Peninsula, with its vertex pointed toward the Hampton Roads Bridge-Tunnel (HRBT). Snow and ice also appear as shades of cyan in the MODIS false-color image.

Terra MODIS true-color and false-color RGB images [click to enlarge]

Terra MODIS true-color and false-color RGB images [click to enlarge]

07 January also happened to be the last full day of imagery to be broadcast by the GOES-13 satellite — a comparison of 1-minute Mesoscale Sector GOES-16 (GOES-East) Visible (0.64 µm) and 15-30 minute interval GOES-13 Visible (0.63 µm) images (below) showed that the V-shaped ice floe continued to drift southwestward toward the HRBT. However, it was difficult to tell whether the ice feature made it over and past the tunnel; even with the improved GOES-16 Visible spatial resolution (0.5 km at satellite sub-point, compared to 1.0 km for GOES-13) and the 1-minute rapid image scans, the ice floe became harder to track during the afternoon hours before high clouds began to overspread the region.

"GOES-16

GOES-16 Visible (0.64 µm, left) and GOES-13 Visible (0.63 µm, right) images, with hourly surface air temperatures (ºF) plotted in yellow [click to play MP4 animation]

However, a close examination of Suomi NPP VIIRS true-color and false-color images at 1826 UTC (below) indicated that some of the ice had indeed moved westward past Fort Monroe (on the far southeastern tip of the Peninsula) and over/past the HRBT.

Suomi NPP VIIRS true-color and false-color RGB images [click to enlarge]

Suomi NPP VIIRS true-color and false-color RGB images [click to enlarge]

On the topic of cold temperatures in southeastern Virginia, a new daily record low of -3 ºF was set at Richmond on the morning of 07 January, and at Norfolk new daily record low and record low maximum temperatures were set (10 ºF and 23 ºF, respectively).

Nighttime views of lake effect snow bands over Lake Superior

January 6th, 2018 |

Suomi NPP VIIRS Day/Night Band (0.7 µm) images, with morning minimum temperatures at Embarrass, Minnesota [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) images, with morning minimum temperatures at Embarrass, Minnesota [click to enlarge]

Shown above are detailed nighttime views of multiple lake effect snow (LES) bands over Lake Superior, provided by Suomi NPP VIIRS Day/Night Band (0.7 µm) images on 04 January, 05 January and 06 January 2018. These “visible images at night” were possible due to ample illumination by the Moon, which was in the Waning Gibbous phase (at 92% of Full on 04 January, 84% of Full on 05 January and 75% of Full on 06 January). The continued flow of arctic air across the still-unfrozen waters of Lake Superior (and the other unfrozen Great Lakes) was responsible for the formation of these and a variety of other LES bands.

For perspective, the daily morning minimum temperatures at Embarrass, Minnesota are also plotted on the images — on these 3 days Embarrass was the coldest official site in the US (including Alaska).

The VIIRS images were captured by the Space Science and Engineering Center direct broadcast ground station.

Satellite signatures of a “sting jet”

January 4th, 2018 |

GOES-16 Lower-level (7.3 µm) images, with hourly plots of buoy and ship reports [click to play MP4 animation]

GOES-16 Lower-level (7.3 µm) images, with hourly plots of buoy and ship reports [click to play MP4 animation]

Satellite signatures of a phenomenon known as a “sting jet” have been shown previously on this blog here, here and here. GOES-16 (GOES-East) Lower-level (7.3 µm) Water Vapor images (above) revealed another classic example of the “scorpion tail” signature of a sting jet associated with the rapidly-intensifying storm off the coast of North Carolina on 04 January 2018.

The passenger cruise ship Norwegian Breakaway was en route to New York City from the Bahamas when it experienced very strong winds and rough seas early in the morning on 04 January (media story) — it appears as though the ship may have been in the general vicinity of this sting jet feature (ship data), where intense winds were descending to the surface from higher levels of the atmosphere:

A comparison of GOES-16 (GOES-East) and GOES-13 Water Vapor images (below) demonstrated how the GOES-16 improvement in spatial resolution  (2 km at satellite sub-point, vs 4 km for GOES-13) and more frequent imaging (routinely every 5 minutes over the CONUS domain, vs 15-30 minutes for GOES-13) helped to better follow the evolution of the sting jet feature. The 2 known locations of the Norwegian Breakaway around the time period of the image animation are plotted in red.

"Water

Water Vapor images from GOES-16 (6.9 µm, left) and GOES-13 (6.5 µm, right), with the 2 known locations of the Norwegian Breakaway plotted in red [click to play MP4 animation]

The sting jet signature was also apparent on GOES-16 Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images (below).

GOES-16 Mid-level (6.9 µm) images, with hourly plots of buoy and ship reports [click to play MP4 animation]

GOES-16 Mid-level (6.9 µm) images, with hourly plots of buoy and ship reports [click to play MP4 animation]

GOES-16 Upper-level (6.2 µm) images, with hourly plots of buoy and ship reports [click to play MP4 animation]

GOES-16 Upper-level (6.2 µm) images, with hourly plots of buoy and ship reports [click to play MP4 animation]

In addition, the sting jet signature was evident in a Suomi NPP VIIRS Day/Night Band (0.7 µm) image at 0614 UTC or 1:14 AM Eastern time (below). Through the clouds, the faint glow of city lights in far eastern North Carolina could be seen along the left edge of the image. The cloud features shown using the “visible image at night” VIIRS Day/Night Band were brightly-illuminated by the Moon, which was in the Waning Gibbous phase at 92% of Full. A VIIRS instrument is aboard the JPSS series of satellites, such as the recently-launched NOAA-20.

Suomi NPP VIIRS Day/Night Band (0.7 µm) image [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) image [click to enlarge]

Another view of the sting jet signature was seen in a 250-meter resolution Aqua MODIS Infrared Window (11.0 µm) image at 0725 UTC (below).

Aqua MODIS Infrared Window (11.0 µm) image [click to enlarge]

Aqua MODIS Infrared Window (11.0 µm) image [click to enlarge]

Explosive cyclogenesis off the East Coast of the United States

January 4th, 2018 |

GOES-16 Clean Window (10.3 µm) Imagery, 0102-1337 UTC on 4 January 2018 (Click to animate)

A strong extratropical cyclone that deposited snow in the deep south developed explosively during the early morning hours of 4 January 2018. The GOES-16 Clean Window (10.3 µm) animation, above, from 0102 – 1337 UTC on 4 January, brackets the explosive development: from 993 hPa at 0000 UTC to 968 mb at 0900 UTC, a strengthening that easily meets the “Bomb” criteria set forth by Sanders and Gyakum (1980). The Clean Window animation shows the strong surface circulation with well-defined conveyor belts. Convection develops at the leading edge of the dry slot that is approaching southern New England at the end of the animation. The Low-Level Water Vapor (7.3 µm) animation for the same time, below, suggests very strong descent behind the storm, where brightness temperatures warmer than -10º C (orange in the enhancement used) are widespread.

GOES-16 Low-Level Water Vapor (7.3 µm) Infrared Imagery, 0102-1332 UTC on 4 January 2018 (Click to animate)

This storm can also be viewed using Red-Green-Blue composites (in addition to the single-channel animations shown above). The Airmass RGB, below, combines the Split Water Vapor Difference (6.2 µm – 7.3 µm) as Red, Split Ozone (9.6 µm – 10.3 µm) as Green, and Upper level Water Vapor (6.2 µm) as Blue. (Other storms analyzed with the Airmass RGB can be seen here, here, and here). The strong red signal in the Airmass RGB south of the storm suggests very strong sinking motion.

GOES-16 AirMass RGB Product, 0102-1332 UTC (Click to animate)

ASCAT Scatterometer winds over the system at 0205 UTC showed an elongated surface circulation with multiple observations of winds exceeding 50 knots (in red), and a large region (in yellow) of winds exceeding 35 knots.

GOES-16 ABI Clean Window (10.3 µm) and ASCAT Scatterometer winds, 0205 UTC on 4 January 2018 (Click to enlarge)

GOES-16 ABI Red Visible (0.64 µm) and ASCAT Scatterometer winds, 1520 UTC on 4 January 2018 (Click to enlarge)

The 1520 UTC ASCAT pass, above, sampled half the storm, and hurricane-force winds were indicated.

The snow that was deposited in the Deep South by this storm (also discussed here) persisted through a cold night and was visible in the GOES-16 Visible (0.64 µm) imagery, below. Highly reflective snow can be difficult in a still image to distinguish from clouds — but the Snow/Ice Channel on GOES-16 (1.61 µm) detects energy at a wavelength that is strongly absorbed by ice. Thus, snow (and ice) on the ground (or in clouds), has a different representation. (Here are toggles between the two images, with and without a map). The snow cover over coastal Georgia, South and North Carolina appears dark in the Snow/Ice channel because the snow is absorbing, not reflecting, the 1.61 µm radiation.  It is noteworthy that the 1.61 µm image is especially dark over far southeastern Georgia northeastward along the immediate coastline of South Carolina.  These are regions where freezing rain and sleet fell, versus predominantly snow to the north and west (as also noted here; The National Weather Service in Tallahassee tweeted out an ice/snow accumulation map that also agrees with the 1.61 µm image).  Ice in the cirrus clouds northeast of North Carolina is also apparent in the Snow/Ice 1.61 µm imagery.

GOES-16 Band 2 Visible (0.64 µm) Imagery, 1412 UTC on 4 January 2018 (Click to enlarge)

GOES-16 ABI Band 5 Snow/Ice (1.61 µm) Imagery, 1412 UTC on 4 January 2018 (Click to enlarge)

Suomi NPP overflew the storm shortly after midnight on 4 January; Day Night band visible imagery (courtesy Kathleen Strabala, CIMSS), below, shows a well-developed cyclone covering much of the northeast Atlantic Ocean. Snow cover is apparent over the deep south of the United States.

Suomi NPP Day Night Band Visible (0.7 µm) Imagery, 0614 UTC on 4 January 2018 (Click to enlarge)

(Added, 5 January 2018: This website shows a during-the-day CIMSS True Color Image animation of the storm on 4 January 2018. Animation courtesy Dave Stettner, CIMSS).