Large hail in north central Colorado

June 18th, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm, left) and “Clean” Infrared Window (10.3 µm, right) images, with plots of SPC storm reports [click to play MP4 animation]

Severe thunderstorms developed  over the Front Range of Colorado during the late afternoon and early evening of 18 June 2018. One of the GOES-16 (GOES-East) Mesoscale Domain Sectors positioned over that region provided 1-minute data — shown above is a comparison of “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.3 µm) images of these storms as they produced large hail (up to 3 inches in diameter) across parts of the Front Range Urban Corridor. SPC storm reports are plotted on the images.

High cloud shadow over eastern Iowa

June 18th, 2018 |

It’s always good to get a question that lends itself well to the “What the heck is this?” blog category. The answer, as is often the case, relies on an examination of imagery from a variety of GOES-16 ABI bands.  To begin, note the darker feature seen on 1-minute Mesoscale Domain Sector GOES-16 “Blue” Visible (0.47 µm), “Red” Visible (0.64 µm) and Near-Infrared “Vegetation” (0.86 µm) images (below), which was moving northeastward across eastern Iowa and passing just to the west of Waterloo (KALO) on the morning of 18 June 2018.

GOES-16 "Blue" Visible (0.47 µm), "Red" Visible (0.64 µm) and Near-Infrared "Snow/Ice" (1.61 µm) images

GOES-16 “Blue” Visible (0.47 µm, left), “Red” Visible (0.64 µm, center) and Near-Infrared “Vegetation” (0.86 µm, right) images [click to play animation | MP4]

To explore the initial hypothesis that this might be a shadow from a higher-altitude cloud feature, GOES-16 Near-Infrared “Cirrus” (1.37 µm), Mid-level Water Vapor (6.9 µm) and Upper-level Water Vapor (6.2 µm) images were examined (below), which did indeed reveal a small cloud element aloft that was drifting in the same direction as the darker feature seen above.

GOES-16 Near-Infrared

GOES-16 Near-Infrared “Cirrus” (1.37 µm, left), Mid-level Water Vapor (6.9 µm, center) and Upper-level Water Vapor (6.2 µm, right) images [click to play animation | MP4]

Finally, a comparison of GOES-16 Near-Infrared “Cirrus” (1.37 µm), Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.3 µm) images (below) showed that this small (and likely thin) high-altitude cloud exhibited no signature in the Shortwave Infrared, but did exhibit a 10.3 µm brightness temperature as cold as -20ºC (cyan enhancement) at times.

GOES-16 Near-Infrared

GOES-16 Near-Infrared “Cirrus” (1.37 µm, left), Shortwave Infrared (3.9 µm, center) and “Clean” Infrared Window (10.3 µm, right) images [click to play animation | MP4]

12 UTC rawinsonde data from Davenport, Iowa (below) showed southwesterly winds and an air temperature just below -20ºC at an altitude of around 9.6 km.

12 UTC rawinsonde data from Davenport, Iowa [click to enlarge]

12 UTC rawinsonde data from Davenport, Iowa [click to enlarge]

Thanks to Andrew Ansorge (NWS DMX) and Rich Mamrosh (NWS GRB) for alerting us to this interesting feature!

Lava flows continue from Kilauea’s Lower East Rift Zone

June 18th, 2018 |

NOAA-20 VIIRS Day/Night Band (0.7 µm), Shortwave Infrared I04 (3.75 µm), Shortwave Infrared M13 (4.05 µm) and Longwave Infrared (11.45 µm) images [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm), Shortwave Infrared I04 (3.75 µm), Shortwave Infrared M13 (4.05 µm) and Longwave Infrared (11.45 µm) images [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm), Shortwave Infrared I04 (3.75 µm), Shortwave Infrared M13 (4.05 µm) and Longwave Infrared (11.45 µm) images (above) showed signatures of the ongoing lava flows from the Lower East Rift Zone of the Kilauea volcano on the Big Island of Hawai’i at 1225 UTC (2:25 am local time) on 18 June 2018.

Note how the central ribbon of hottest lava flow (which continues its active ocean entry) saturated the I04 3.75 µm image, causing a “wrap-around” effect to display cold brightness temperatures (white pixels) — although the M13 4.05 µm band has a lower spatial resolution, it saturates at much higher temperatures, and sensed brightness temperatures in the 480 to 557 K range. The Infrared images also showed evidence of steam clouds flowing southward over the adjacent offshore waters.

A webcam image from near Kapoho (PGcam) around the time of the NOAA-20 VIIRS images is shown below. The active Fissure 8 is near the center of the image.

Webcam image from near Kapoho [click to enlarge]

Webcam image from near Kapoho [click to enlarge]

VIIRS imagery and webcam capture courtesy of William Straka (CIMSS).