Cyclone Mekunu in the northwest Indian Ocean

May 23rd, 2018 |
Meteosat-8 Infrared 10.8 µm imagery, 1630 UTC 22 May - 1715 UTC 23 May 2018 (Click to animate)

Meteosat-8 Infrared 10.8 µm imagery, 1630 UTC 22 May – 1715 UTC 23 May 2018 (Click to animate)

Cyclone Mekunu in the northwest Indian Ocean was approaching Oman and Yemen on the Arabian Peninsula on 23 May 2018, as shown in the animation above. Morphed Microwave Imagery, below, (from this site) for the 24 hours ending at 1900 UTC on 23 May 2018, shows the storm at the periphery of deep tropical moisture.  This moisture will likely lead to devastating floods in the desert regions of Oman and Yemen as the storm approaches. (News Link 1, 2 and 3).  Cyclone Chapala that affected the region in 2015 also caused devastating floods.

Microwave-based Total Precipitable Water for 24 hours ending 1900 UTC on 23 May 2018 (Click to enlarge)

Microwave imagery, below, (from this site) shows how the organization of the storm changed in the 24 hours ending around 1600 UTC on 23 May 2018.   AMSU microwave imagery for this storm can be found here (off of this website).

Morphed Microwave Imagery over Mekunu for the 24 hours ending at 1600 UTC (Click to enlarge)

Satellite intensity estimates for the storm are shown below (taken from this website). The Meteosat-8 infrared animation, above, shows a periodic increase and decay in the strong convection near the center. Satellite estimates of strength (below) show a consistent lowering of the central pressure of the storm, however; winds have consistently increased.

Satellite-based estimates of Mekunu’s central pressure (Click to enlarge)

Mekunu is traversing a region with very high Sea Surface Temperatures and modest shear. Significant weakening is not forecast.

Sea Surface Temperatures and Shear over the northwest Indian Ocean (Click to enlarge)

More information on this unusual tropical cyclone can be found at the CIMSS Tropical Weather Website (link) and the CIRA Tropical Weather Website (link).

=============== Added, 24 May 2018 ==============

Suomi-NPP overflew Mekunu at 2133 UTC on 23 May 2018, and the toggle below (between the Day Night Band and the 11.45 µm infrared;  Click here for a zoomed-in toggle between the Day Night Band and the 11.35 µm infrared image) shows the storm well-illuminated by a waxing gibbous Moon.  Strong convection with lightning is apparent north of the island of Socotra.  (VIIRS imagery courtesy Will Straka, CIMSS)

Suomi NPP VIIRS Infrared (11.45 µm) and Day Night Band Visible (0.70 µm) imagery over Mekunu, 2133 UTC on 23 May 2018 (Click to enlarge)

=============== Added, 25 May 2018 ==============

Mekunu is approaching the coast of Oman on 25 May 2018 from the southeast.  The animation below of visible (0.6 µm, left) and Infrared (10.8 µm ,right) imagery shows a compact storm with deep convection around an eye.  Microwave Imagery for the 24 hours ending at 1300 UTC on 25 May (here, from this site) suggest Mekunu is strengthening as it nears the coast. (Satellite-estimated winds and pressure also suggest strengthening near landfall).

Meteosat-8 Visible (0.6 µm, left) and Infrared (10.8 µm, right) imagery over Mekunu, 1145 UTC on 24 May to 1215 UTC on 25 May 2018 (Click to animate)

Visible Imagery from 1045 to 1430 UTC, below, suggests landfall will occur shortly after sunset east of the Oman/Yemen border.  Infrared Imagery (at bottom) shows a landfall near 1800 UTC.

Meteosat-8 Visible (0.6 µm, left) imagery over Mekunu, 1045 UTC to 1430 UTC on 25 May 2018 (Click to animate)

Meteosat-8 Infrared (10.8 µm, left) imagery over Mekunu, 1415 UTC to 1830 UTC on 25 May 2018 (Click to animate)

Surface observations from Salalah, in southern Oman (click here), show sustained tropical-storm force winds, with gusts to 60 knots, from the east for several hours today. Normal annual precipitation for the region is about 5″.

PyroCb in Ontario, Canada

May 22nd, 2018 |

GOES-16 “Red” Visible (0.64 µm, top), Shortwave Infrared (3.9 µm, center) and “Clean” Infrared Window (10.3 µm, bottom) images, with hourly plots of surface reports [click to play MP4 animation]

GOES-16 “Red” Visible (0.64 µm, top), Shortwave Infrared (3.9 µm, center) and “Clean” Infrared Window (10.3 µm, bottom) images, with hourly plots of surface reports [click to play MP4 animation]

GOES-16 (GOES-East) “Red” Visible (0.64 µm), Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.3 µm) images (above) showed that Canadian wildfires burning along the Manitoba/Ontario border produced a pyroCumulonimbus (pyroCb) around 1930 UTC on 22 May 2018.

As the pyroCb moved southeastward over western Ontario, the coldest GOES-16 cloud-top infrared brightness temperatures were around -55ºC (orange enhancement), which corresponded to altitudes of about 10.3 to 10.8 km according the rawinsonde data from Pickle Lake, Ontario (below).

Rawinsonde data profiles from Pickle Lake, Ontario [click to enlarge]

Rawinsonde data profiles from Pickle Lake, Ontario [click to enlarge]

In a comparison of 1-km resolution NOAA-19 Visible (0.63 µm), Shortwave Infrared (3.7 µm) and Infrared Window (10.8 µm) images at 2210 UTC (below), the minimum cloud-top infrared brightness temperature was -58.1ºC (darker orange enhancement), which roughly corresponded to altitudes of 10.6 to 11.0 km (just below the tropopause) on the Pickle Lake soundings.

NOAA-19 Visible (0.63 µm), Shortwave Infrared (3.7 µm) and Infrared Window (10.8 µm) images [click to enlarge]

NOAA-19 Visible (0.63 µm), Shortwave Infrared (3.7 µm) and Infrared Window (10.8 µm) images [click to enlarge]

Minor explosive eruption of Kilauea in Hawai’i

May 19th, 2018 |

Himawari-8 Ash Cloud Height product {click to play animation]

Himawari-8 Ash Cloud Height product [click to play animation]

An explosive eruption from the Halema’uma’u crater at the Kilauea summit on the Big Island of Hawai’i occurred around 1550 UTC on 19 May 2018. Using Himawari-8 data, multispectral retrievals of parameters such as Ash Cloud Height (above) and Ash Loading (below) from the NOAA/CIMSS Volcanic Cloud Monitoring site helped to characterize the volcanic ash plume.

Himawari-8 Ash Loading product [click to play animation]

Himawari-8 Ash Loading product [click to play animation]

Later in the day, a Suomi NPP VIIRS True-color Red-Green-Blue (RGB) image viewed using RealEarth (below) showed the hazy signature of volcanic smog or “vog” which had spread out to the south, southwest and west of the Big Island. Light amounts of ash fall were reported downwind of Kilauea.

Suomi NPP VIIRS True-color RGB image [click to enlarge]

Suomi NPP VIIRS True-color RGB image [click to enlarge]

The 3.9 µm channel at night over very cold cloud tops

May 17th, 2018 |

GOES-16 ABI Infrared Imagery from 3.9 µm (Upper Left), 10.3 µm (Upper Right), 8.5 µm (Lower Left) and 12.3 µm (Lower Right), 0747 – 0832 UTC on 15 May 2018 (Click to enlarge)

When cloud top temperatures are very cold, the 3.9 µm imagery will have characteristics that suggest a noisy signal.  The 45-minute animation above shows a cold cloud top east of Florida in 4 different infrared channels:  3.9 µm (Upper Left), 10.3 µm (Upper Right), 8.5 µm (Lower Left) and 12.3 µm (Lower Right).  That the 3.9 µm image shows noise is not a new problem, as it was present in legacy GOES imagery as explained here.  At very cold temperatures the relationship between radiance (detected by the satellite) and temperature is highly non-linear, because of the character of the Planck function for that wavelength, meaning a very small change in radiance — within the noise — causes a large change in temperature (Compare the first two figures at this link for legacy GOES, for example).

Examine the two figures for GOES-16 below. They show the Planck curves for Band 14 (11.2 µm) and Band 7 (3.9 µm). Two things are apparent. Band 7 (3.9 µm), by design, covers a larger range of temperatures. In addition, very small changes in detected radiance (“counts”) at cold temperatures cause very big changes in the 3.9 µm brightness temperature. The relationship between detected radiance and very cold temperatures is much smoother at 11.2 µm.  The 3.9 µm band lacks precision compared to the other window channels, such as the 11.2 µm, for very cold temperatures. 

Plot of discrete values of Radiance vs. 11.2 µm brightness temperatures (190 K to 420 K) according to the Planck Relationship (Click to enlarge)

Plot of discrete values of Radiance vs. 3.9 µm brightness temperatures (190 K to 420 K) according to the Planck Relationship (Click to enlarge)

A zoomed-in view for cold brightness temperatures between 190 and 230 K (-83.15º C to -43.15º C) is shown below. If a true temperature of 208 K is being sensed by the satellite at the two wavelengths, it will be well-resolved at 11.2 µm, but the 3.9 µm detection will jump between 205 K and 210 K: the nature of the relationship between radiance and brightness temperature is such that there is less precision at the colder end at 3.9 µm. In the 30 K range from 197-227 K, just 12 possible bits are available in the 3.9 µm band (12 out of 2^14 — 16,384; recall that Band 7 on ABI has the highest bit depth of all the channels).  A change of just one count is a large difference in 3.9 µm brightness temperature.

Users need smarter ways to enhance the coldest 3.9 µm to prevent the flashing pixels evident in common traditional color and black-and-white enhancements.  Consider creating a color enhancement that shows only one color at temperatures colder than, say, -40º C, because the detector does not precisely distinguish between the coldest temperatures.  In other words, don’t highlight the noise!  Conversely, don’t use the 3.9 µm imagery at night to discern cloud-top features.   During the day, solar radiation at 3.9 µm reflected off cloud tops causes an increase in apparent brightness temperature so this quantization noise does not occur.

Plot of discrete values of Radiance vs. 11.2 µm brightness temperatures (190 K to 230 K) according to the Planck Relationship (Click to enlarge)

Plot of discrete values of Radiance vs. 3.9 µm brightness temperatures (190 K to 230 K) according to the Planck Relationship (Click to enlarge)

As noted above, this is not a new problem. An image (produced using McIDAS-X) of an Mesoscale Complex over the Great Plains of the United States from GOES-16 is here at 10.3 µm and here at 3.9 µm; the same image from GOES-15 is shown here at 10.7 µm and here at 3.9 µm. In both shortwave images, speckling at very cold cloud top temperatures is apparent.

(Thanks to Mat Gunshor, CIMSS, and Tim Schmit, NOAA, for figures and comments on this entry)