Wildfires in Northern California

October 9th, 2017 |

GOES-16 Shortwave Infrared (3.9 µm) images, with county outlines plotted in gray (dashed) and surface station identifiers plotted in white [click to play MP4 animation]

GOES-16 Shortwave Infrared (3.9 µm) images, with county outlines plotted in gray (dashed) and surface station identifiers plotted in white [click to play MP4 animation]

* GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *

GOES-16 Shortwave Infrared (3.9 µm) images (above) showed the “hot spot” signatures (black to yellow to red pixels) associated with numerous wildfires that began to burn in Northern California’s Napa County around 0442 UTC on 09 October 2017 (9:42 PM local time on 08 October). A strong easterly to northeasterly Diablo wind (gusts) along with dry fuels led to extreme fire behavior, with many of the fires quickly exhibiting very hot infrared brightness temperature values and growing in size at an explosive rate (reportedly burning 80,000 acres in 18 hours).

A comparison of nighttime GOES-16 Shortwave Infrared (3.9 µm) and Near-Infrared “Snow/Ice” (1.61 µm) images (below) offered another example of nocturnal fire signature identification — the bright glow of the fires showed up well on the 1-km resolution 1.61 µm imagery. Especially noteworthy was the very rapid southwestward run of the Tubbs Fire, which eventually moved just south of station identifier KSTS (Santa Rosa Sonoma County Airport; the city of Santa Rosa is located about 5 miles southeast of the airport. These Northern California fires have resulted in numerous fatalities, destroyed at least 3500 homes and businesses, and forced large-scale evacuations (media story).

GOES-16 Shortwave Infrared (3.9 µm, left) and Near-Infrared

GOES-16 Shortwave Infrared (3.9 µm, left) and Near-Infrared “Snow/Ice” (1.61 µm, right) images [click to play MP4 animation]

A toggle between 1007 UTC (3:07 AM local time) Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images (below) provided a view of the fires at an even higher spatial resolution. Since the Moon was in the Waning Gibbous phase (at 82% of Full), it provided ample illumination to highlight the dense smoke plumes drifting west-southwestward over the adjacent offshore waters of the Pacific Ocean.

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

A closer VIIRS image comparison (with county outlines) is shown below.

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

A comparison of Suomi NPP VIIRS true-color and false-color Red/Green/Blue (RGB) images from RealEarth (below) helped to discriminate between smoke and cloud features offshore over the Pacific Ocean.

Suomi NPP VIIRS True-color and False-color RGB images [click to enlarge]

Suomi NPP VIIRS True-color and False-color RGB images [click to enlarge]

===== 10 October Update =====
Suomi NPP VIIRS true-color and false-color images [click to enlarge]

Suomi NPP VIIRS true-color and false-color images [click to enlarge]

With the switch to southwesterly surface winds on 10 October, smoke plumes could be seen moving northeastward on RealEarth VIIRS true-color imagery, while the burn scars of a number of the larger fires became apparent on VIIRS false-color RGB imagery (above).

===== 11 October Update =====

Landsat-8 false-color RGB images, from 04 October (before the Tubbs Fire) and 11 October (after the Tubbs Fire) [click to enlarge]

Landsat-8 false-color RGB images, from 04 October (before the Tubbs Fire) and 11 October (after the Tubbs Fire) [click to enlarge]

A toggle (above)  between 30-meter resolution Landsat-8 false-color RGB images from 04 October (before the Tubbs Fire) and 11 October (after the Tubbs Fire) showed the size of the fire burn scar (shades of brown) which extended southwestward from the fire source region into Santa Rosa.

===== 12 October Update =====
Suomi NPP VIIRS true-color RGB images, with VIIRS-detected fire locations [click to enlarge]

Suomi NPP VIIRS true-color RGB images, with VIIRS-detected fire locations [click to enlarge]

A transition back to northerly winds on 12 October helped to transport the wildfire smoke far southward over the Pacific Ocean (above). Smoke was reducing surface visibility and adversely affecting air quality at locations such as San Francisco (below).

Time series plot of surface observations at San Francisco International Airport [click to enlarge]

Time series plot of surface observations at San Francisco International Airport [click to enlarge]

Suomi NPP VIIRS Aerosol Optical Depth values were very high — at or near 1.0 — within portions of the dense smoke plume (below).

Suomi NPP VIIRS true-color RGB image and Aerosol Optical Depth product [click to enlarge]

Suomi NPP VIIRS true-color RGB image and Aerosol Optical Depth product [click to enlarge]

Increase in Gulf of Mexico water turbidity in the wake of Hurricane Irma

September 11th, 2017 |

Suomi NPP VIIRS true-color RGB images on 07 September and 11 September [click to enlarge]ep

A comparison of Suomi NPP VIIRS true-color Red/Green/Blue (RGB) images on 07 September (before Irma) and 11 September (after Irma) revealed a marked increase in turbidity of the shallow Continental Shelf waters off the coast of southern/southwestern Florida and the Florida Keys. Irma moved through that region on 10 September as a Category 3 hurricane — and even though the center of Irma moved northward off/along the west coast of Florida (with a wind gust to 75 mph at Key West) , the strongest winds were recorded along/near the east coast of Florida: wind gusts to 92 mph and 109 mph and 142 mph — stirring up particulates within the shallow Continental Shelf waters.

* GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *

Large-scale (CONUS) VIIRS true-color before-Irma and after-Irma images are available here and here. Note that the cloud shield of Irma had expanded as far westward as Kansas, Texas and Oklahoma on 12 September ( GOES-16 true-color images) — in addition to large areas of dense smoke from wildfires in the Pacific Northwest (blog post) which was drifting eastward across the northern US.

Category 5 Hurricane Irma over the Lesser Antilles

September 6th, 2017 |

Suomi NPP’s Day Night Band Image, below, from Real Earth, shows Hurricane Irma as it is over the island of Barbuda — note that the island is entirely within the eye! (Click here for an image with no underlying maps).

Suomi NPP Day Night Band Visible (0.7 µm) image, 0529 UTC on 6 September 2017, with underlying map (Click to enlarge)

GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing

GOES-16 Clean Window (10.3 µm) imagery at 30-second intervals, 0957 – 1202 UTC on 6 September 2017 (Click to animate)

GOES-16 Clean Window (10.3 µm) imagery, above, for two hours near sunrise on 6 September 2017 show a well-developed Irma moving through the islands to the east of Puerto Rico. The storm maintains its excellent satellite presentation with a distinct eye. Geostationary Lightning Mapper Data overlain on the 10.3 µm imagery (with a greyscale enhancement), below, shows that lightning continues to be active within the eyewall of this strong storm.

GOES-16 10.3 µm imagery at 15-minute intervals, with Geostationary Lightning Mapper (GLM) data overlain at 3-minute intervals, yellow oldest, red newest (Click to animate)

For the latest on this powerful storm, consult the National Hurricane Center website, or the CIMSS Tropical Weather Website.

Increase in Turbidity near the Texas Gulf Coast following Hurricane Harvey

August 30th, 2017 |

Terra MODIS True-Color imagery off the Texas Gulf Coast on 23 and 30 August, 2017 (Click to enlarge)

MODIS Today imagery from 23 August (pre-Harvey) (cropped) and 30 August (post-Harvey) (cropped), above, show an enormous increase in turbidity in the nearshore waters off the coast of Texas. Further, many of the rivers change their appearance to brown and flooding in the post-Harvey image. (River gauges in flood stage; Source)

A similar toggle using Suomi NPP VIIRS Imagery, from this site, also from 23 August and 30 August, is shown below. The increase in turbidity was due to a combination of strong winds and runoff from very heavy rainfall associated with the hurricane.

Suomi NPP True-Color imagery off the Texas Gulf Coast on 23 and 30 August, 2017 (Click to enlarge)

Suomi NPP VIIRS Products include a River Flood estimate, developed by Sanmei Li and others at George Mason University. The toggle below from RealEarth shows Suomi NPP VIIRS True Color at 1904 UTC, and the River Flood Product for the same time.

Suomi NPP VIIRS True-Color imagery off the Texas Gulf Coast, 1904 UTC on 30 August, 2017, and the Suomi NPP River Flood Product at the same time (Click to enlarge)

(Thanks to Bill Taylor and John Stoppkotte, NWS in N. Platte NE, for noting this!)