Swan Lake Fire in Alaska

August 17th, 2019 |

GOES-17

GOES-17 “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images [click to play animation | MP4]

1-minute Mesoscale Domain Sector GOES-17 (GOES-West) “Red” Visible (0.64 µm) and Shortwave Infrared (3.9 µm) images (above) revealed thick smoke and a pronounced thermal anomaly (hot pixels, darker black) associated with the Swan Lake Fire on the Kenai Peninsula in south-central Alaska on 17 August 2019. Later in the day, a few pyrocumulus jumps could be seen in Visible imagery over the fire source region, as fire behavior increased (another day when pyrocumulus jumps were apparent with this fire was 30 June, during a period when southerly winds were transporting dense smoke to the Anchorage area).

Strong northerly-northwesterly winds were transporting smoke from the Swan Lake Fire southward across the Kenai Peninsula and the Seward area — a time series of surface report data from Seward (below) showed that this smoke had reduced the visibility to less than 1 mile by 03 UTC (7 PM local time). South-central Alaska was experiencing drought conditions, which had worsened from the preceding week; the strong winds on this day acted to dry fuels even further, leading to a re-invigoration of the long-lived fire.

Time series of surface reports from Seward, Alaska [click to enlarge]

Time series of surface report data from Seward, Alaska [click to enlarge]

Seward Airport webcam image at 2358 UTC [click to enlarge]

Seward Airport webcam image at 2358 UTC [click to enlarge]

The PM2.5 Air Quality Index reached 427 at Cooper Landing, and 358 farther downwind at Seward (below).

Air Quality Index at Copper Landing and Seward [click to enlarge]

Air Quality Index at Copper Landing and Seward [click to enlarge]

The southward transport of smoke across the Seward area and out over the adjacent offshore waters of the Gulf of Alaska was evident in VIIRS True Color Red-Green-Blue (RGB) images from NOAA-20 and Suomi NPP, as viewed using RealEarth (below).

VIIRS True Color RGB images from NOAA-20 and Suomi NPP [click to enlarge]

VIIRS True Color RGB images from NOAA-20 and Suomi NPP [click to enlarge]

Largest hailstone on record for the state of Colorado

August 13th, 2019 |

GOES-16

GOES-16 “Red” Visible (0.64 µm, left) and “Clean” Infrared Window (10.35 µm, right) images, with plots of SPC Storm Reports [click to play animation | MP4]

1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images (above) displayed the increasing coverage of thunderstorms along the Colorado/Kansas border on 13 August 2019, These thunderstorms produced a few tornadoes and large hail — including hail of 5.00 inches in diameter at 2135 UTC near Bethune in extreme eastern Colorado (SPC storm reports).

 

A toggle between NOAA-20 VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images (below) showed the storms at 2022 UTC — just over an hour before the 5.00-inch hail report at 2135 UTC. Note that the NOAA-20 images are incorrectly labelled as Suomi NPP.

NOAA-20 Visible (0.64 µm) and Infrared Window (11.45 µm) images, with NUCAPS sounding locations and surface reports [click to enlarge]

NOAA-20 VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images, with NUCAPS sounding locations and surface reports [click to enlarge]

The NOAA-20 NUCAPS profile for the green dot in far western Kansas (below) showed that the airmass in advance of the approaching thunderstorms was very unstable, with a Most Unstable parcel Convective Available Potential Energy (MU CAPE) value of 2737 J/kg and a Lifted Index (LI) value of -10ºC (with no Convective Inhibition CINH).

NOAA-20 NUCAPS profile in far western Kansas [click to enlarge

NOAA-20 NUCAPS profile in far western Kansas [click to enlarge]

In contrast, the NUCAPS profile for the green dot in eastern Colorado (below) revealed an airmass that was less unstable in the wake of the departing thunderstorms.

NOAA-20 NUCAPS profile in eastern Colorado [click to enlarge]

NOAA-20 NUCAPS profile in eastern Colorado [click to enlarge]

===== 14 August Update =====

NWS Goodland Public Information Statement.

 

 

Severe thunderstorms in the Dakotas, as viewed by 4 GOES

August 3rd, 2019 |

 

Visible images from GOES-17, GOES-15, GOES-14 and GOES-16, with SPC Storm Reports plotted in red [click to play animation | MP4]

Visible images from GOES-17, GOES-15, GOES-14 and GOES-16, with SPC Storm Reports plotted in red [click to play animation | MP4]

With GOES-14 undergoing its annual INR testing and evaluation, it afforded the ability to monitor features such as severe thunderstorms in the western Dakotas from 4 GOES — GOES-17 (GOES-West) at 137.2ºW, GOES-15 at 128ºW, GOES-14 at 105ºW and GOES-16 (GOES-East) at 75.2ºW longitude (above). These storms produced hail as large as 2.0 inches in diameter and damaging winds to 75 mph (SPC Storm Reports). The images are displayed in the native projection of each satellite.

Severe weather in Minnesota and Wisconsin

July 19th, 2019 |

GOES-16 "Red" Visible (0.64 µm) images, with SPC Storm Reports plotted in red [click to play MP4 animation]

GOES-16 “Red” Visible (0.64 µm) images, with SPC Storm Reports plotted in red [click to play MP4 animation]

1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) showed the development and propagation of a Mesoscale Convective System (MCS) that produced hail up to 3.0 inches in diameter in Minnesota and wind gusts to 84 mph and a few tornadoes in Wisconsin (SPC Storm Reports | NWS Twin Cities | MN DNR | NWS Green Bay) on 19 July 2019. Numerous overshooting tops and widespread storm-top gravity waves were evident in the imagery, along with a few Above-Anvil Cirrus Plume features extending northeastward from some of the overshooting tops around sunset. Also notable were the inflow feeder bands that were streaming northward into the southern flank of the MCS across Minnesota.

A comparison of GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images (below) revealed cloud-top infrared brightness temperatures as cold as -86ºC over northwestern Wisconsin.

GOES-16

GOES-16 “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.35 µm) images [click to play MP4 animation]

As the MCS persisted into the subsequent nighttime hours, GOES-16 Infrared images (below) showed the large canopy of cold cloud tops, with infrared brightness temperatures of -80ºC or colder (violet pixels).  Some of the embedded storms exhibited well-defined Enhanced-V storm top signatures (for example, at 2219 UTC).

GOES-16

GOES-16 “Clean” Infrared Window (10.35 µm) images, with SPC Storm Reports plotted in cyan [click to play animation | MP4]

===== 22 July Update =====

Terra MODIS True Color RGB images, 11 July vs 22 July [click to enlarge]

Terra MODIS True Color RGB images, 11 July vs 22 July [click to enlarge]

A comparison of Terra MODIS True Color Red-Green-Blue (RGB) images from 11 July and 22 July (above) showed the subtle NW-SE oriented swath of downed trees across northeastern Wisconsin. A 14 July vs 22 July comparison as viewed using RealEarth is shown below — the swath extended from approximately Pickerel to Mountain.

14 July and 22 July Terra MODIS True Color RGB images [click to enlarge]

Terra MODIS True Color RGB images, 14 July vs 22 July [click to enlarge]

In 22 July Terra MODIS images displayed using AWIPS (below), the swath of downed trees was brighter (more reflective) in the Near-Infrared “Snow/Ice” (1.61 µm), warmer (darker shades of orange to red) in the Shortwave Infrared (3.7 µm) and Land Surface Temperature, and lighter shades of green in the Normalized Difference Vegetation Index.

Terra MODIS Visible (0.65 µm), Near-Infrared "Snow/Ice" (1.61 µm), Shortwave Infrared (3.7 µm), Land Surface Temperature and Normalized Difference Vegetation Index images on 22 July [click to enlarge]

Terra MODIS Visible (0.65 µm), Near-Infrared “Snow/Ice” (1.61 µm), Shortwave Infrared (3.7 µm), Land Surface Temperature and Normalized Difference Vegetation Index images on 22 July [click to enlarge]

The swath of downed trees was also seen in GOES-16 Normalized Difference Vegetation Index images (below), showing up as a darker shade of green with that product’s default enhancement.

GOES-16 Normalized Difference Vegetation Index images [click to play animation]

GOES-16 Normalized Difference Vegetation Index images on 22 July [click to play animation]