Strong jet stream over the Lower 48 states

February 17th, 2019 |

GOES-16 Upper-level Water Vapor (6.2 µm) images, with plots of Derived Motion Winds [click to play animation | MP4]

GOES-16 Upper-level Water Vapor (6.2 µm) images, with plots of Derived Motion Winds [click to play animation | MP4]

An unusually strong jet stream was located over the Lower 48 states on 17 February 2019. GOES-16 (GOES-East) Upper-level Water Vapor (6.2 µm) images with plots of Derived Motion Winds (above) showed numerous tracked targets along and south of the jet stream axis — within the jet streak exit region over the Mid-Atlantic states, some velocity values were as high as 181 knots (below).

GOES-16 Upper-level Water Vapor (6.2 µm) image, with plots of Derived Motion Winds at 0002 UTC [click to enlarge]

GOES-16 Upper-level Water Vapor (6.2 µm) image, with plots of Derived Motion Winds at 0002 UTC [click to enlarge]

A plot of rawinsonde data from Lincoln, Illinois at 00 UTC (below) showed wind speeds as high as 190 knots at a pressure of 231 hPa.

Plot of 00 UTC rawinsonde data from Lincoln, Illinois [click to enlarge]

Plot of 00 UTC rawinsonde data from Lincoln, Illinois [click to enlarge]

GOES-16 Air Mass RGB images from the AOS site (below) provided a classic portrayal of the green hues of warm/moist tropical air south of and the orange/red hues of cold/dry polar air north of this strong jet stream.

GOES-16 Air Mass RGB images [click to play animation | MP4]

GOES-16 Air Mass RGB images [click to play animation | MP4]

===== 18 February Update =====

GOES-17 "Red" Visible (0.64 µm) and Near-Infrared "Snow/Ice (1.61 µm) images [click to play animation | MP4]

GOES-17 “Red” Visible (0.64 µm) and Near-Infrared “Snow/Ice (1.61 µm) images [click to play animation | MP4]

The large southward dip of the polar jet stream — evident in the GOES-16 Air Mass RGB images from the previous day — brought cold air into the Desert Southwest, resulting in snowfall at lower-elevation locations such as Las Vegas, Nevada. GOES-17 “Red” Visible (0.64 µm) and Near-Infrared “Snow/Ice (1.61 µm) images (above) revealed snow on the ground in the Las Vegas area — much of which quickly melted with increased surface heating after sunrise. Snow cover is a good absorber of radiation at the 1.61 µm wavelength, so it appeared as darker shades of gray on the Snow/Ice images; the distribution of the heavier snowfall amounts (which naturally melted more slowly) was influenced by the topography of the area. This snowfall forced the closure of Interstate 15 from Las Vegas to the Nevada/California border for several hours due to icy pavement and multiple traffic accidents.

The snow cover was apparent in Visible imagery from 4 GOES (below) — GOES-17 (GOES-West), GOES-15 (the backup GOES-West), GOES-16 (GOES-East) and GOES-13 (the backup GOES-East, which had been brought out of storage for annual maintenance activities).

Visible images from GOES-17, GOES-15, GOES-15 and GOES-13 [click to play animation | MP4]

Visible images from GOES-17, GOES-15, GOES-15 and GOES-13 [click to play animation | MP4]



Erosion of supercooled cloud layers downwind of industrial sites

February 16th, 2019 |

GOES-16 "Red" Visible (0.64 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images (above) revealed a cloud-free notch over northeastern Indiana during the early morning hours on 16 February 2019. The corresponding GOES-16 Cloud Top Phase product (below) indicated that the cloud layer across that region was composed of supercooled water cloud droplets. The point source of this cloud notch feature was the Steel Dynamics industrial site southeast of Columbia City — emissions from this location contained particles that acted as efficient ice condensation nuclei, causing the supercooled droplets to glaciate and fall from the cloud as snow. The cloud notch initially passed over Huntington (located about 15 miles to the south), and the Northern Indiana NWS office received a report of ice crystals or fine snow and hazy sunshine when the clearing moved over that location. The automated ASOS sensor at the Huntington airport did not report any snow, but the visibility briefly dropped to 7 miles with a lowering of cloud height just after 14 UTC.

GOES-16 Cloud Top Phase product [click to play animation | MP4]

GOES-16 Cloud Top Phase product [click to play animation | MP4]

Farther to the east, GOES-16 Visible images (below) showed prominent industrial plumes coming from the Detroit, Michigan and Cleveland, Ohio areas — with smaller plumes originating from points southeast of Lorain and southwest of Canton in Ohio. Light snow was intermittently reported at 2 sites south of Detroit as the industrial plume passed overhead. As with the previous case over Indiana, these industrial plumes were occurring within a supercooled water droplet cloud layer.

GOES-16 "Red" Visible (0.64 µm) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

250-meter resolution Terra MODIS True Color and False Color Red-Green-Blue (RGB) images from the MODIS Today site (below) provided a more detailed view of the industrial plumes coming from the Detroit and Cleveland areas. The darker cyan color appearing within the cloud gaps was a signature of glaciated cloud material that was descending from the supercooled cloud layer, falling as snow. Since there was no snow on the ground reported that morning at Detroit in Michigan or at Cleveland and Akron in Ohio, we can be confident that the dark cyan was not a signature of surface snow cover being viewed through gaps in the cloud deck.

Terra MODIS True Color and False Color RGB images [click to enlarge]

Terra MODIS True Color and False Color RGB images at 1610 UTC [click to enlarge]

In a larger-scale view of Terra MODIS True Color and False Color RGB images from RealEarth (below), note the presence of another industrial plume with its point source south of Sarnia, Ontario — in contrast to the other industrial plumes, the emissions from that source contained particles which acted as cloud condensation nucle — causing the supercooled cloud water droplets to become smaller, which made them more reflective and exhibit a brighter white appearance in the RGB images.

Terra MODIS True Color and False Color RGB images [click to enlarge]

Terra MODIS True Color and False Color RGB images [click to enlarge]

Looking at the Ontario plume using GOES-16 Visible, Near-Infrared “Snow/Ice” (1.61 µm) and Near-Infrared “Cloud Particle Size” (2.24 µm) imagery (below), higher reflectivity of the smaller supercooled water droplets within the industrial plume is most apparent in the Near-Infrared images. This plume passed over Chatham, Ontario (CYCK), where light snow was report — though it’s unclear whether this snow was simply ongoing synoptic system and/or lake effect snow, or if there was some minor plume enhancement aiding the snowfall.

GOES-16 "Red" Visible (0.64 µm, left), Near-Infrared "Snow/Ice" (1.61 µm, center) and Near-Infrared "Cloud Particle Size" (2.24 µm, right) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm, left), Near-Infrared “Snow/Ice” (1.61 µm, center) and Near-Infrared “Cloud Particle Size” (2.24 µm, right) images [click to play animation | MP4]

The Ontario industrial plume also exhibited a warmer signature on GOES-16 Shortwave Infrared (3.9 µm) images (below), since smaller supercooled water droplets are more efficient reflectors of incoming solar radiation.

GOES-16 Near-Infrared "Snow/Ice" (1.61 µm, left) and Near-Infrared "Cloud Particle Size" (2.24 µm, center) and Shortwave Infrared (3.9 µm, right) images [click to play animation | MP4]

GOES-16 Near-Infrared “Snow/Ice” (1.61 µm, left), and Near-Infrared “Cloud Particle Size” (2.24 µm, center) and Shortwave Infrared (3.9 µm, right) images [click to play animation | MP4]

Strong midlatitude cyclone north of Hawai’i

February 10th, 2019 |
GOES-17

GOES-17 “Red” Visible (0.64 µm) images [click to play MP4 animation]

* GOES-17 images shown here are preliminary and non-operational *

1-minute Mesoscale Domain Sector GOES-17 “Red” Visible (0.64 µm) images from the AOS site (above) showed the distinct circulation of a strong midlatitude cyclone (surface analyses) that was centered just north of Hawai’i on 10 February 2019. The pressure gradient associated with this storm produced strong winds across the island chain. Wave heights to 38.4 feet were recorded at Buoy 51208 near Kaua’i, with wind gusts to 57 knots at Buoy 51001 northwest of Kauwa’i.



GOES-17 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images (below) revealed the presence of numerous lee waves which extended hundreds of miles downwind of the islands — most notable were those emanating from Kauwa’i.

GOES-17 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) images [click to play animation | MP4]

GOES-17 Low-level (7.3 µm), Mid-level (6.9 µm) and Upper-level (6.2 µm) Water Vapor images [click to play animation | MP4]

Derived Motion Winds calculated using GOES-15 (GOES-West) Water Vapor (6.5 µm) imagery from the CIMSS Tropical Cyclones site (below) showed targets with velocites of 150-160 knots just north of Hawai’i at 09 UTC and 12 UTC.

Derived Motion Winds calculated using GOES-15 Water Vapor (6.5 µm) imagery [click to enlarge]

Derived Motion Winds calculated using GOES-15 Water Vapor (6.5 µm) imagery [click to enlarge]

GOES-17 Air Mass RGB images (below) showed the orange to red hues signifying a lowered tropopause and increased stratospheric ozone within the atmospheric column as the storm evolved during the 09-10 February time period.

GOES-17 Air Mass RGB images [click to play MP4 animation]

GOES-17 Air Mass RGB images [click to play MP4 animation]

Suomi NPP VIIRS True Color and Infrared Window (11.45 µm) images at 23 UTC as viewed using RealEarth are shown below.

Suomi NPP VIIRS True Color and Infrared Window (11.45 µm) images at 23 UTC [click to enlarge]

Suomi NPP VIIRS True Color and Infrared Window (11.45 µm) images at 23 UTC [click to enlarge]

Cyclogenesis along the US East Coast

February 4th, 2019 |


The approach of an upper-tropospheric Potential Vorticity (PV) anomaly induced rapid cyclogenesis just off the US East Coast on 04 February 2019, with the surface low rapidly occluding (surface analyses). The eastward-propagating PV Anomaly was apparent on GOES-16 (GOES-East) Air Mass RGB images from the AOS site (below) as darker shades of orange — transitioning to shades of red as the tropopause descended to lower altitudes bringing more ozone-rich air from the stratosphere into the atmospheric column.

GOES-16 Air Mass RGB images [click to play MP4 animation]

GOES-16 Air Mass RGB images [click to play MP4 animation]

A sequence of Infrared Window images from Terra MODIS (11.0 µm) and NOAA-20/Suomi NPP VIIRS (11.45 µm) (below) showed the cyclone at various stages of development. The surface low passed over  the Cape Lookout, North Carolina buoy as it was intensifying, with winds gusting to 44 knots around 12 UTC (winds/pressure | peak wind gusts).

Infrared Window images from Terra MODIS (11.0 µm) and NOAA-20/Suomi NPP VIIRS (11.45 µm), with plot of fixed buoy reports [click to enlarge]

Infrared Window images from Terra MODIS (11.0 µm) and NOAA-20/Suomi NPP VIIRS (11.45 µm), with plots of fixed buoy reports [click to enlarge]

A similar sequence of Visible images from Terra MODIS (0.65 µm) and NOAA-20/Suomi NPP VIIRS (0.64 µm) (below) showed the cyclone during daylight hours.

Visible images from Terra MODIS (0.65 µm) and NOAA-20/Suomi NPP VIIRS (0.64 µm), with plots of fixed buoy reports [click to enlarge]

Visible images from Terra MODIS (0.65 µm) and NOAA-20/Suomi NPP VIIRS (0.64 µm), with plots of fixed buoy reports [click to enlarge]

===== 05 February Update =====

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images [click to play MP4 animation]

After the primary center of circulation began to weaken, a pair of residual lower-tropospheric vortices (surface analyses) was seen to persist on GOES-16 “Clean” Infrared Window (10.3 µm) images (above), rotating around each other in a binary interaction known as the Fujiwhara effect. The two vortices were also evident in NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 0620 UTC (below) — in spite of the lack of illumination from a New Moon, airglow alone was sufficient to provide an impressive “visible image at night” with the Day/Night Band. (note: the NOAA-20 VIIRS images are incorrectly labeled as Suomi NPP)

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 0620 UTC [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images at 0620 UTC [click to enlarge]

During the early morning hours, an undular bore was evident on GOES-16 “Red” Visible (0.64 µm) images (below), moving toward the westernmost vortex. As the bore began to move over warmer waters of the Gulf Stream, it slowly dissipated.

GOES-16

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

Although not particularly intense, this slow-moving midlatitude cyclone was able to draw an appreciable amount of moisture northward from the tropics/subtropics as shown by the MIMIC Total Precipitable Water product (below).

MIMIC Total Precipitable Water product [click to play animation | MP4]

MIMIC Total Precipitable Water product [click to play animation | MP4]