Severe turbulence over coastal South Carolina

November 15th, 2019 |

GOES-16 Upper-level Water Vapor (6.2 µm) images, with plots of pilot reports and SIGMET boundaries [click to play animation | MP4]

GOES-16 Upper-level Water Vapor (6.2 µm) images, with pilot reports of turbulence and SIGMET boundaries [click to play animation | MP4]

GOES-16 (GOES-East) Upper-level Water Vapor (6.2 µm) images (above) revealed the presence of elongated W-E oriented billow clouds, many of which exhibited small-scale ripples that were oriented N-S along the billow cloud tops, over coastal areas of South Carolina and North Carolina on 15 November 2019. An initial SIGMET (November 1) was issued covering airspace over Georgia and South Carolina — Severe Turbulence (plotted in red) was reported at 41,000 feet and at 35,000 feet. A second SIGMET (November 2) was later issued covering airspace over South Carolina and North Carolina.

The same GOES-16 Water Vapor images which include isotachs of RAP40 model maximum wind (at any level) are shown below — most of the Moderate to Severe turbulence reports were occurring within the speed gradient along the poleward (left) edge of a SW-NE oriented jet stream flowing parallel to the coast.

GOES-16 Upper-level Water Vapor (6.2 µm) images, with plots of pilot reports, SIGMET boundaries, and isotachs of RAP40 model maximum wind [click to play animation | MP4]

GOES-16 Upper-level Water Vapor (6.2 µm) images, with pilot reports of turbulence, SIGMET boundaries, and isotachs of RAP40 model maximum wind [click to play animation | MP4]

More detailed views of the billow-top ripples were provided by a Terra MODIS Visible image at 1600 UTC, and NOAA-20 VIIRS True Color Red-Green-Blue (RGB) and Infrared images as visualized using RealEarth (below).

Terra MODIS Visible (0.65 µm) image, with plots of pilot reports and SIGMET boundaries [click to enlarge]

Terra MODIS Visible (0.65 µm) image, with pilot reports of turbulence and SIGMET boundaries [click to enlarge]

NOAA-20 VIIRS True Color RGB and Infrared Window (11.45 µm) images, with pilot reports of turbulence [click to enlarge]

NOAA-20 VIIRS True Color RGB and Infrared Window (11.45 µm) images, with pilot reports of turbulence [click to enlarge]

Medicane Trudy

November 11th, 2019 |

EUMETSAT Meteosat-11 Visible (0.8 µm) images, with hourly plots of surface reports [click to play animation | MP4]

EUMETSAT Meteosat-11 Visible (0.8 µm) images, with hourly plots of surface reports [click to play animation | MP4]

EUMETSAT Meteosat-11 Visible (0.8 µm) images (above) showed the circulation and eye-like feature of Medicane “Trudy” (named “DETLEF” by Free University Berlin) as it moved southeastward across the Mediterranean Sea toward the coast of Algeria on 11 November 2019.

VIIRS True Color Red-Green-Blue (RGB) and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP (as visualized using RealEarth) are shown below.

VIIRS True Color RGB and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge]

VIIRS True Color RGB and Infrared Window (11.45 µm) images from NOAA-20 and Suomi NPP [click to enlarge] 

At 0630 UTC, a northerly wind gust of 52 knots was recorded at Menorca, Spain (LEMH) as the medicane passed near the Balearic Islands — and several hours later as the system moved inland just after sunset, a northwesterly wind gust of 43 knots occurred at Jijel, Algeria (DAAV) at 18 UTC (below).

Time series of surface observation data from Menorca, Spain [click to enlarge]

Time series of surface observation data from Menorca, Spain [click to enlarge]

Time series of surface observation data from Jijel, Algeria [click to enlarge]

Time series of surface observation data from Jijel, Algeria [click to enlarge]

Bush fires in eastern Australia

November 8th, 2019 |

JMA Himawari-8 “Red” Visible (0.64 µm), Shortwave Infrared (3.9 µm) and Longwave Infrared Window (10.4 µm) imagery (below) showed the evolution of smoke plumes, hot 3.9 µm fire thermal anomalies (red pixels) and cloud-top infrared brightness temperatures of isolated pyrocumulus associated with bush fires that were burning in far eastern parts of New South Wales and Queensland, Australia from 1900 UTC on 07 November to 0800 UTC on 08 November 2019. With strong northwesterly surface winds, many of the fire thermal anomalies exhibited rapid southeastward runs toward the coast. That region of Australia had just experienced severe to record 3-month rainfall deficiencies — which included the driest October on record for the southern third of the country.

Himawari-8

Himawari-8 “Red” Visible (0.64 µm) images, with hourly plots of surface reports [click to play animation | MP4]

Himawari-8 Shortwave Infrared (3.9 µm) images, with hourly plots of surface reports [click to play animation | MP4]

Himawari-8 Shortwave Infrared (3.9 µm) images, with hourly plots of surface reports [click to play animation | MP4]

Himawari-8 Longwave Infrared Window (10.4 µm) images, with hourly plots of surface reports [click to play animation | MP4]

Himawari-8 Longwave Infrared Window (10.4 µm) images, with hourly plots of surface reports [click to play animation | MP4]

Himawari-8 True Color Red-Green-Blue (RGB) images created using McIDAS-V (below) provided another view of the dense smoke plumes from 0000-0610 UTC. Toward the end of the animation — in the upper left portion of the satellite scene — plumes of blowing dust could be seen moving eastward from farther inland.

Himawari-8 True Color RGB images (credit: Bob Carp, SSEC) [click to play animation | MP4]

Himawari-8 True Color RGB images (credit: Bob Carp, SSEC) [click to play animation | MP4]

A combination of Suomi NPP VIIRS True Color RGB and Shortwave Infrared (4.1 µm) imagery at 0328 UTC (below) revealed hot thermal signatures of the fires (yellow to red enhancement) at the source of the smoke plumes.

Suomi NPP VIIRS True Color RGB + Shortwave Infrared (4.1 µm) imagery at 0328 UTC [click to enlarge]

Suomi NPP VIIRS True Color RGB + Shortwave Infrared (4.1 µm) imagery at 0328 UTC (credit: Bob Carp, SSEC) [click to enlarge]

A toggle between a Suomi NPP VIIRS True Color RGB image and a display of Sentinel-5 TROPOMI Tropospheric Vertical Column NO2 (below) indicated high NO2 concentrations immediately downwind of these fires.

Suomi NPP VIIRS True Color RGB image + TROPOMI Tropospheric Vertical Column NO2 [click to enlarge]

Suomi NPP VIIRS True Color RGB image + Sentinel-5 TROPOMI Tropospheric Vertical Column NO2 (credit: Bob Carp, SSEC) [click to enlarge]

The dense smoke plumes were also evident in a sequence of 3 VIIRS True Color RGB images from NOAA-20 and Suomi NPP, as visualized using RealEarth (below).

NOAA-20 and Suomi NPP VIIRS True Color RGB images [click to enlarge]

VIIRS True Color RGB images from NOAA-20 and Suomi NPP [click to enlarge]

Smoke reduced the surface visibility to 3 miles or less at Grafton (YGFN) from 03-05 UTC (below).

Time series of surface report data from Grafton, New South Wales [click to enlarge]

Time series of surface report data from Grafton, New South Wales [click to enlarge]


Tropical Storm Pablo in the East Atlantic Ocean

October 25th, 2019 |

GOES-16 “Red” Visible (0.64 µm, left) and “Clean” Infrared Window (10.3 µm, right) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm, left) and “Clean” Infrared Window (10.3 µm, right) images [click to play animation | MP4]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) and “Clean” Infrared Window (10.3 µm) images (above) displayed the compact circulation and pinhole eye of Tropical Storm Pablo which developed in the East Atlantic Ocean on 25 October 2019.

A toggle between Suomi NPP VIIRS True Color Red-Green-Blue (RGB) and Infrared Window (11.45 µm) images viewed using RealEarth  provided a higher-resolution view of Pablo around 15 UTC (below).

Suomi NPP VIIRS True Color RGB and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS True Color RGB and Infrared Window (11.45 µm) images [click to enlarge]

A larger-scale view of the VIIRS images (below) showed that the compact Pablo was embedded within a broad anomalously-deep area of low pressure over the eastern Atlantic.

Suomi NPP VIIRS True Color RGB and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS True Color RGB and Infrared Window (11.45 µm) images [click to enlarge]

===== 26 October Update =====

GOES-16 “Red” Visible (0.64 µm, top) and “Clean” Infrared Window (10.3 µm, bottom) images [click to play animation | MP4]

GOES-16 “Red” Visible (0.64 µm, top) and “Clean” Infrared Window (10.3 µm, bottom) images [click to play animation | MP4]

GOES-16 Visible and Infrared images (above) showed Tropical Storm Pablo southwest of the Azores on 26 October.

After sunset, GOES-16 Infrared images (below) captured Pablo as it pass across the Azores, southeast of Santa Maria (LPAZ) — during that time, the tropical cyclone lost its intermittent eye feature.

GOES-16 “Clean” Infrared Window (10.3 µm) images [click to play animation | MP4]

GOES-16 “Clean” Infrared Window (10.3 µm) images [click to play animation | MP4]